scholarly journals BS-LSTM: An Ensemble Recurrent Approach to Forecasting Soil Movements in the Real World

2021 ◽  
Vol 9 ◽  
Author(s):  
Praveen Kumar ◽  
Priyanka Sihag ◽  
Pratik Chaturvedi ◽  
K.V. Uday ◽  
Varun Dutt

Machine learning (ML) proposes an extensive range of techniques, which could be applied to forecasting soil movements using historical soil movements and other variables. For example, researchers have proposed recurrent ML techniques like the long short-term memory (LSTM) models for forecasting time series variables. However, the application of novel LSTM models for forecasting time series involving soil movements is yet to be fully explored. The primary objective of this research is to develop and test a new ensemble LSTM technique (called “Bidirectional-Stacked-LSTM” or “BS-LSTM”). In the BS-LSTM model, forecasts of soil movements are derived from a bidirectional LSTM for a period. These forecasts are then fed into a stacked LSTM to derive the next period’s forecast. For developing the BS-LSTM model, datasets from two real-world landslide sites in India were used: Tangni (Chamoli district) and Kumarhatti (Solan district). The initial 80% of soil movements in both datasets were used for model training and the last 20% of soil movements in both datasets were used for model testing. The BS-LSTM model’s performance was compared to other LSTM variants, including a simple LSTM, a bidirectional LSTM, a stacked LSTM, a CNN-LSTM, and a Conv-LSTM, on both datasets. Results showed that the BS-LSTM model outperformed all other LSTM model variants during training and test in both the Tangni and Kumarhatti datasets. This research highlights the utility of developing recurrent ensemble models for forecasting soil movements ahead of time.

2021 ◽  
Vol 42 (18) ◽  
pp. 6921-6944
Author(s):  
Yi Chen ◽  
Yi He ◽  
Lifeng Zhang ◽  
Youdong Chen ◽  
Hongyu Pu ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2392
Author(s):  
Antonello Rosato ◽  
Rodolfo Araneo ◽  
Amedeo Andreotti ◽  
Federico Succetti ◽  
Massimo Panella

Here, we propose a new deep learning scheme to solve the energy time series prediction problem. The model implementation is based on the use of Long Short-Term Memory networks and Convolutional Neural Networks. These techniques are combined in such a fashion that inter-dependencies among several different time series can be exploited and used for forecasting purposes by filtering and joining their samples. The resulting learning scheme can be summarized as a superposition of network layers, resulting in a stacked deep neural architecture. We proved the accuracy and robustness of the proposed approach by testing it on real-world energy problems.


2021 ◽  
Author(s):  
Pradeep Lall ◽  
Tony Thomas ◽  
Ken Blecker

Abstract Prognostics and Remaining Useful Life (RUL) estimations of complex systems are essential to operational safety, increased efficiency, and help to schedule maintenance proactively. Modeling the remaining useful life of a system with many complexities is possible with the rapid development in the field of deep learning as a computational technique for failure prediction. Deep learning can adapt to multivariate parameters complex and nonlinear behavior, which is difficult using traditional time-series models for forecasting and prediction purposes. In this paper, a deep learning approach based on Long Short-Term Memory (LSTM) network is used to predict the remaining useful life of the PCB at different conditions of temperature and vibration. This technique can identify the different underlying patterns in the time series that can predict the RUL. This study involves feature vector identification and RUL estimations for SAC305, SAC105, and Tin Lead solder PCBs under different vibration levels and temperature conditions. The acceleration levels of vibration are fixed at 5g and 10g, while the temperature levels are 55°C and 100°C. The test board is a multilayer FR4 configuration with JEDEC standard dimensions consists of twelve packages arranged in a rectangular pattern. Strain signals are acquired from the backside of the PCB at symmetric locations to identify the failure of all the packages during vibration. The strain signals are resistance values that are acquired simultaneously during the experiment until the failure of most of the packages on the board. The feature vectors are identified from statistical analysis on the strain signals frequency and instantaneous frequency components. The principal component analysis is used as a data reduction technique to identify the different patterns produced from the four strain signals with failures of the packages during vibration. LSTM deep learning method is used to model the RUL of the packages at different individual operating conditions of vibration for all three solder materials involved in this study. A combined model for RUL prediction for a material that can take care of the changes in the operating conditions is also modeled for each material.


2020 ◽  
Vol 11 (2) ◽  
pp. 131
Author(s):  
Josua Manullang ◽  
Albertus Joko Santoso ◽  
Andi Wahju Rahardjo Emanuel

Abstract. Prediction of tourist visits of Mount Merbabu National Park (TNGMb) needs to be done to control the number of visitors and to preserve the national park. The combination of time series forecasting (TSF) and deep learning methods has become a new alternative for prediction. This case study was conducted to implement several methods combination of TSF and Long-Short Term Memory (LSTM) to predict the visits. In this case study, there are 18 modelling scenarios as research objects to determine the best model by utilizing tourist visits data from 2013 to 2018. The results show that the model applying the lag time method can improve the model's ability to capture patterns on time series data. The error value is measured using the root mean square error (RMSE), with the smallest value of 3.7 in the LSTM architecture, using seven lags as a feature and one lag as a label.Keywords: Tourist Visit, Taman Nasional Gunung Merbabu, Prediction, Recurrent Neural Network, Long-Short Term MemoryAbstrak. Prediksi kunjungan wisatawan Taman Nasional Gunung Merbabu (TNGMb) perlu dilakukan untul pengendalian jumlah pengunjung dan menjaga kelestarian taman nasional. Gabungan metode antara time series forecasting (TSF) dan deep learning telah menjadi alternatif baru untuk melakukan prediksi. Studi kasus ini dilakukan untuk mengimplementasi gabungan dari beberapa macam metode antara TSF dan Long-Short Term Memory (LSTM) untuk memprediksi kunjungan pada TNGMb. Pada studi kasus ini, terdapat 18 skenario pemodelan sebagai objek penelitian untuk menentukan model terbaik, dengan memanfaatkan data jumlah kunjungan wisatawan di TNGMb mulai dari tahun 2013 sampai dengan tahun 2018. Hasil prediksi menunjukkan pemodelan dengan menerapkan metode lag time dapat meningkatakan kemampuan model untuk menangkap pola pada data deret waktu. Besar nilai kesalahan diukur menggunakan root mean square error (RMSE), dengan nilai terkecil sebesar 3,7 pada arsitektur LSTM, menggunakan tujuh lag sebagai feature dan satu lag sebagai label. Kata Kunci: Kunjungan Wisatawan, Taman Nasional Gunung Merbabu, Prediksi, Recurrent Neural Network, Long-Short Term Memory


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Xiaofei Zhang ◽  
Tao Wang ◽  
Qi Xiong ◽  
Yina Guo

Imagery-based brain-computer interfaces (BCIs) aim to decode different neural activities into control signals by identifying and classifying various natural commands from electroencephalogram (EEG) patterns and then control corresponding equipment. However, several traditional BCI recognition algorithms have the “one person, one model” issue, where the convergence of the recognition model’s training process is complicated. In this study, a new BCI model with a Dense long short-term memory (Dense-LSTM) algorithm is proposed, which combines the event-related desynchronization (ERD) and the event-related synchronization (ERS) of the imagery-based BCI; model training and testing were conducted with its own data set. Furthermore, a new experimental platform was built to decode the neural activity of different subjects in a static state. Experimental evaluation of the proposed recognition algorithm presents an accuracy of 91.56%, which resolves the “one person one model” issue along with the difficulty of convergence in the training process.


Sign in / Sign up

Export Citation Format

Share Document