scholarly journals Artificial Ground Freezing Impact on Shear Strength and Microstructure of Granite Residual Soil Under an Extremely Low Temperature

2021 ◽  
Vol 9 ◽  
Author(s):  
Ran An ◽  
Xianwei Zhang ◽  
Lingwei Kong ◽  
Jianwu Gong ◽  
Xuewen Lei

The Artificial Ground Freezing (AGF) method, which is widely used in tunnel excavations, significantly affects the properties of geotechnical materials in frozen walls under extremely low temperatures. In order to simulate the AGF process, the freezing treatment with a temperature of −30°C and thawing treatment temperature of 25°C were performed on natural specimens of granite residual soil (GRS). Subsequently, triaxial (TRX) tests were conducted to evaluate mechanical properties and Nuclear Magnetic Resonance Image (NMRI) tests were applied to detect pore distributions of GRS. To clarify variations of microstructure after freezing-thawing, the relaxation time (T2) distribution curves and T2-weighted images from NMRI results were thoroughly analyzed from the perspective of quantization and visualization. Results show that the shear strength as well as the cohesion of GRS are reduced sharply by the AGF process, while the internal friction angle decreases gently. The pore size distribution (PSD) converted from the T2 curve is constituted of two different peaks, corresponding to micro-pores with diameters from 0.1 to 10 µm and macro-pores with diameters from 10 to 1,000 µm. Under the AGF impact, the expansion in macro-pores and shrinkage in micro-pores simultaneously exist in the specimen, which was verified from a visualized perspective by T2-weighted images. The frost heaving damage on shear strength is attributed to the microstructural disturbance caused by the presence of large-scale pores and uneven deformations in GRS, which is subjected to the AGF impact under an extremely low temperature.

2021 ◽  
Vol 337 ◽  
pp. 01003
Author(s):  
Valteson da Silva Santos ◽  
Allan B.Silva de Medeiros ◽  
Romário S.Amaro da Silva ◽  
Olava F. Santos ◽  
Osvaldo de Freitas Neto ◽  
...  

In the last decades, several engineering works have been developed in the Northeast of Brazil, a region marked by the occurrence of collapsible and expansive soils. This work aimed to characterize and study the behavior of two samples of residual soils collected in the municipality of Salgueiro-PE regarding their collapse potentials and shear strength parameters, in natural and disturbed conditions, evaluating the influence of the applied vertical stresses and the structural arrangement in these properties. The results obtained showed that the two samples analyzed show collapsible behavior, however, the observed potential for collapse was lower after the original structure arrangement was undone. From the direct shear strength tests, the strength parameters of the two soils were obtained, which pointed effective friction angle close to 30° and cohesive intercept close to 0 kPa. The destructuring of the samples did not cause a considerable variation in these parameters. Thus, it was possible to conclude that for these samples the microstructure has a predominant influence on the occurrence of collapsibility, but does not have the same relevance on the shear strength, such that the material’s destructuring can be considered as an effective measure to reduce the potential collapse.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Qiang Ma ◽  
Qian Deng ◽  
Jia Mou ◽  
Shuo Yang ◽  
Xu Zhang

In order to clear the shear mechanism of the scrap tire strips reinforced brick powder, a series of large-scale direct shear tests were carried out on the pure brick powder and reinforced brick powder. The scrap tire strips with 50 mm in length, 5 mm in thickness, and 10 mm, 30 mm, and 50 mm in width were put into the brick powder with volume percentages of 2%, 6%, and 10% as reinforcement, respectively. The results show that the internal friction angle and cohesion increase by adding scrap tire strips into brick powder. The peak shear strength of reinforced brick powder initially decreases, thereafter increases and finally decreases with the increase of volume percentage of the scrap tire strips. And the peak shear strength increases in the initial stage and then decreases with the increase of the scrap tire strips dimension. The optimal dimension and volume percentage of the scrap tire strips are 50 mm × 30 mm × 5 mm and 6%, respectively. In addition, the scrap tire strips provide constraints to restrict the vertical displacement of integral reinforced brick powder, and relative to the pure brick powder, the larger the vertical load is, the greater the decrease of vertical displacement is.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Beenish Jehan Khan ◽  
Irshad Ahmad ◽  
Hassan Nasir ◽  
Abdullah Abdullah ◽  
Qazi Khawar Gohar

The use of scrap tires in various engineering applications has been extensively explored. The present study has the following aim: to evaluate the suitability of tire-sand mixtures as backfill material based on its shear strength. To achieve this objective, modified Proctor compaction tests were performed on tire shred-sand mixture with mixing proportions by weight of tire shreds and sand (0/100, 20/80, 30/70, and 40/60) using different sizes of tire shreds (50 mm, 75 mm, and 100 mm). Based on the results of the modified Proctor compaction test, the two mixing proportions, i.e., tire shred/sand, 20/80 and 30/70, respectively, were selected. Large-scale direct shear test indicated higher internal friction angle and cohesion values for tire shred-sand mixtures (30/70) with 100 mm tire size (38.5° and 19 kPa) as compared with sand-only backfill material (30.9° and 0 kPa). Based on stress-strain behavior plots, it was indicated that the inclusion of tire shreds imparts ductility to backfill mixtures. To achieve the second objective, the pull-out tests were performed with deformed steel bars of two different diameters (12.7 mm and 15.8 mm) embedded in various backfill mixtures prepared with tire shreds of three different sizes (50, 75, and 100 mm). The pull-out test result indicated that the deformed steel bars exhibit higher pull-out resistance in tire shred-sand mixtures (9.9 kN/m) compared with sand-only backfill material (4.1 kN/m).


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Xiao-qi Zhou ◽  
Jian-li Pan ◽  
Yang Liu ◽  
Cai-cheng Yu

This paper analyzes the vertical ground movement during large-scale pipe roof installation and artificial ground freezing of Gongbei tunnel of the Hong Kong-Zhuhai-Macau bridge project. The transverse ground settlement during pipe roof installation is analyzed. The ground loss volume ratio and settlement trough width coefficient during pipe jacking are estimated based on the field measurement of ground settlement. The interaction of pipes during multiple jacking is investigated. The effect of frost heave control by pregrouting, limiting frozen soil thickness, and combination of the two methods is evaluated. The analysis shows that the ground settlement during pipe roof installation by jacking 37 pieces of 1620 mm steel pipes is relatively small with a maximum value of 2.2 cm. The reinforcement to ground provided by the fore-jacked pipes reduces the ground loss volume ratio and, consequently, the ground settlement during the follow-up pipe jacking. The artificial ground freezing generates a relatively large ground heave with a maximum value of 7.8 cm. Pregrouting plays a critical role in the frost heave control by reducing the heave by about 33%. Limiting the frozen soil thickness by heating pipes serves as an effective supplement to frost heave control by reducing the heave by about 9%. The combination of the two measures reduces the ground heave by about 42%. Findings from this paper provide valuable reference to the tunnel construction using pipe roof and artificial ground freezing as presupport.


2014 ◽  
Vol 32 (4) ◽  
pp. 911-922 ◽  
Author(s):  
Luís Pinheiro Branco ◽  
António Topa Gomes ◽  
António Silva Cardoso ◽  
Carla Santos Pereira

2015 ◽  
Vol 52 (8) ◽  
pp. 1122-1135 ◽  
Author(s):  
Xiaobin Chen ◽  
Jiasheng Zhang ◽  
Yuanjie Xiao ◽  
Jian Li

Few studies have focused on evaluating regular surface roughness and its effect on interfacial shear behavior of the red clay – concrete interface. This paper presents the results of a series of laboratory large-scale direct shear tests conducted using different types of red clay – concrete interfaces. The objective is to examine the effect of surface roughness on these types of soil–concrete interfaces. In the smooth-interface tests, the measured peak and residual shear strength values are very close to each other, with no observed shear dilation. The surface roughness is found to have a remarkable effect on the interfacial shear strength and shear behavior, with the shear strength increasing with increased surface roughness level. The shear dilation is likely to occur on rougher interfaces under lower confining pressure due to the behavior of compressed clay matrices. Owing to the clay matrix’s cohesion and friction, the interfacial shear strength on rough interfaces consists of cohesive and frictional forces between the clay and concrete surfaces. The friction angle value is observed to fluctuate between the clay’s friction angle and the smooth interface’s friction angle. This can be related to the position change of the shear failure slip plane. The confining pressure and surface roughness could change the shear failure plane’s position on the interface. Furthermore, the red clay – structure interface is usually known as the weakest part in the mechanical safety assessment.


Sign in / Sign up

Export Citation Format

Share Document