scholarly journals Shear Strength and Pull-Out Response of Tire Shred-Sand Mixture Reinforced with Deformed Steel Bars

2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Beenish Jehan Khan ◽  
Irshad Ahmad ◽  
Hassan Nasir ◽  
Abdullah Abdullah ◽  
Qazi Khawar Gohar

The use of scrap tires in various engineering applications has been extensively explored. The present study has the following aim: to evaluate the suitability of tire-sand mixtures as backfill material based on its shear strength. To achieve this objective, modified Proctor compaction tests were performed on tire shred-sand mixture with mixing proportions by weight of tire shreds and sand (0/100, 20/80, 30/70, and 40/60) using different sizes of tire shreds (50 mm, 75 mm, and 100 mm). Based on the results of the modified Proctor compaction test, the two mixing proportions, i.e., tire shred/sand, 20/80 and 30/70, respectively, were selected. Large-scale direct shear test indicated higher internal friction angle and cohesion values for tire shred-sand mixtures (30/70) with 100 mm tire size (38.5° and 19 kPa) as compared with sand-only backfill material (30.9° and 0 kPa). Based on stress-strain behavior plots, it was indicated that the inclusion of tire shreds imparts ductility to backfill mixtures. To achieve the second objective, the pull-out tests were performed with deformed steel bars of two different diameters (12.7 mm and 15.8 mm) embedded in various backfill mixtures prepared with tire shreds of three different sizes (50, 75, and 100 mm). The pull-out test result indicated that the deformed steel bars exhibit higher pull-out resistance in tire shred-sand mixtures (9.9 kN/m) compared with sand-only backfill material (4.1 kN/m).

2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Qiang Ma ◽  
Qian Deng ◽  
Jia Mou ◽  
Shuo Yang ◽  
Xu Zhang

In order to clear the shear mechanism of the scrap tire strips reinforced brick powder, a series of large-scale direct shear tests were carried out on the pure brick powder and reinforced brick powder. The scrap tire strips with 50 mm in length, 5 mm in thickness, and 10 mm, 30 mm, and 50 mm in width were put into the brick powder with volume percentages of 2%, 6%, and 10% as reinforcement, respectively. The results show that the internal friction angle and cohesion increase by adding scrap tire strips into brick powder. The peak shear strength of reinforced brick powder initially decreases, thereafter increases and finally decreases with the increase of volume percentage of the scrap tire strips. And the peak shear strength increases in the initial stage and then decreases with the increase of the scrap tire strips dimension. The optimal dimension and volume percentage of the scrap tire strips are 50 mm × 30 mm × 5 mm and 6%, respectively. In addition, the scrap tire strips provide constraints to restrict the vertical displacement of integral reinforced brick powder, and relative to the pure brick powder, the larger the vertical load is, the greater the decrease of vertical displacement is.


2019 ◽  
Vol 92 ◽  
pp. 11014
Author(s):  
Hakki O. Ozhan

In order to evaluate the shear strength parameters of an anionic polymer-added bentonite-sand mixture that was permeated with tap water, Proctor compaction tests and direct shear tests were performed on the mixture with a bentonite content of 15% by mass. The polymer content in the polymer-bentonite mixture was chosen as 0.5, 1, 2, 5, 10, 15 and 20% by mass, respectively. According to the results, maximum dry unit weight (Vdmax) first decreased as the polymer content was increased to 1% and then, increased. Vdmax of 20% polymer-added mixture and the mixture without polymer addition was measured as 17.55 and 17.28 kN/m3, respectively. Test results indicated that cohesion (c) increased and internal friction angle (ø) decreased due to polymer addition. 2% polymer addition caused an increase of 42 kPa in c but a decrease of 4.2° in ø. As the polymer content increased, maximum shear strength of the mixture (τmax) increased. τmax increased from 171.8 to 197.8 kPa as the polymer content was increased from 0 to 2%. As a result, 2% anionic polymer-added bentonite-sand mixture provided sufficient increase in the shear strength of the mixture.


1995 ◽  
Vol 32 (1) ◽  
pp. 78-88 ◽  
Author(s):  
B.E. Lingnau ◽  
J. Graham ◽  
N. Tanaka

Two models are proposed for describing the stress–strain behavior of sand–bentonite (buffer) mixtures at elevated temperatures: (1) isothermal pseudoelasticity and (2) isothermal elastic-plasticity. Data to support the models come from consolidated undrained triaxial compression tests performed on dense saturated buffer specimens at effective confining stresses up to 9.0 MPa and temperatures of 26°, 65°, and 100 °C. Measurements indicate that volumes decrease with increasing temperature if the tests are carried out under drained conditions. These trends can be modelled by a family of hardening lines in semilog compression space. Power law relationships are presented for undrained shear-strength envelopes that increase in size with an increase in temperature. The slopes of unload-reload lines, κ, in semilog compression space vary with temperature and can be related to systematic variation in the friction angle [Formula: see text]. The shear modulus G50 at 50% peak strength also depends on temperature. Several plotting techniques are used to show the existence of different state boundary surfaces for each test temperature. Key words : sand–bentonite, buffer, compression, shear strength, temperature, modelling.


2021 ◽  
Vol 9 ◽  
Author(s):  
Ran An ◽  
Xianwei Zhang ◽  
Lingwei Kong ◽  
Jianwu Gong ◽  
Xuewen Lei

The Artificial Ground Freezing (AGF) method, which is widely used in tunnel excavations, significantly affects the properties of geotechnical materials in frozen walls under extremely low temperatures. In order to simulate the AGF process, the freezing treatment with a temperature of −30°C and thawing treatment temperature of 25°C were performed on natural specimens of granite residual soil (GRS). Subsequently, triaxial (TRX) tests were conducted to evaluate mechanical properties and Nuclear Magnetic Resonance Image (NMRI) tests were applied to detect pore distributions of GRS. To clarify variations of microstructure after freezing-thawing, the relaxation time (T2) distribution curves and T2-weighted images from NMRI results were thoroughly analyzed from the perspective of quantization and visualization. Results show that the shear strength as well as the cohesion of GRS are reduced sharply by the AGF process, while the internal friction angle decreases gently. The pore size distribution (PSD) converted from the T2 curve is constituted of two different peaks, corresponding to micro-pores with diameters from 0.1 to 10 µm and macro-pores with diameters from 10 to 1,000 µm. Under the AGF impact, the expansion in macro-pores and shrinkage in micro-pores simultaneously exist in the specimen, which was verified from a visualized perspective by T2-weighted images. The frost heaving damage on shear strength is attributed to the microstructural disturbance caused by the presence of large-scale pores and uneven deformations in GRS, which is subjected to the AGF impact under an extremely low temperature.


2004 ◽  
Vol 41 (2) ◽  
pp. 227-241 ◽  
Author(s):  
Jorge G Zornberg ◽  
Alexandre R Cabral ◽  
Chardphoom Viratjandr

Tire shreds and tire shred – soil mixtures can be used as alternative backfill material in many geotechnical applications. The reuse of tire shreds may not only address growing environmental and economic concerns, but also help solve geotechnical problems associated with low soil shear strength. In this study, an experimental testing program was undertaken using a large-scale triaxial apparatus with the goal of evaluating the optimum dosage and aspect ratio of tire shreds within granular fills. The effects on shear strength of varying confining pressure and sand matrix relative density were also evaluated. The tire shred content and tire shred aspect ratio were found to influence the stress–strain and volumetric strain behaviour of the mixture. The axial strain at failure was found to increase with increasing tire shred content. Except for specimens of pure tire shreds and with comparatively high tire shred content, the test results showed a dilatant behaviour and a well-defined peak shear strength. The optimum tire shred content (i.e., the one leading to the maximum shear strength) was approximately 35%. For a given tire shred content, increasing the tire shred aspect ratio led to increasing overall shear strength, at least for the range of tire shred aspect ratios considered in this study. The shear strength improvement induced by tire shred inclusions was found to be sensitive to the applied confining pressure, with larger shear strength gains obtained under comparatively low confinement.Key words: tire shreds, shear strength, reinforcement, triaxial testing, stress–strain behaviour.


Materials ◽  
2019 ◽  
Vol 12 (22) ◽  
pp. 3649
Author(s):  
Fu Yi ◽  
Hui Li ◽  
Jia Zhang ◽  
Xutong Jiang ◽  
Maocheng Guan

Geotextile tubes are used in dam construction because fine tailings are difficult to use. The shear characteristics of geotextile tubes during dam operation are closely related to those of the materials used to construct the tubes. Pull-out tests can accurately reflect the interfacial shear characteristics between geosynthetics in practice, so pull-out tests were carried out for different interfacial types of polypropylene woven fabrics under dry and wet states. The effects of the type of interface and dry-wet states on the interfacial shear characteristics were investigated, and the impact mechanisms were also discussed. The results indicated that P-type interfaces (the warp yarn on the interface is parallel to the pulling direction) tended to harden. However, PTP-type (the warp yarn on the interface is perpendicular to each other) and T-type (the weft yarn on the interface is parallel to the pulling direction) interfaces softened first and then tended to plateau after reaching peak shear stress, and softening became more obvious at higher normal stresses. The displacement corresponding to peak shear stress (referred to as “peak displacement” in this paper) of interfaces was positively correlated with the normal stress, and the wet state reduced the interfacial peak displacement. For different types of interfaces, the peak displacement of the T-type interface was the largest, followed by PTP-type and P-type. Interfacial shear characteristics conformed to Mohr–Coulomb strength theory and, compared with quasi-cohesion values ranging from 1.334 to 3.606 kPa, the quasi-friction angle significantly contributed to the interfacial shear strength. The quasi-friction angle of the interface was composed of a sliding friction angle and an occlusal friction angle. The shear strength of the interface was more sensitive to the interface types than whether they were in the dry or wet state. For different types of interfaces and dry-wet states, the change in the interfacial shear strength is respectively affected by the occlusal friction angle and the sliding friction angle on the interface.


2015 ◽  
Vol 52 (8) ◽  
pp. 1122-1135 ◽  
Author(s):  
Xiaobin Chen ◽  
Jiasheng Zhang ◽  
Yuanjie Xiao ◽  
Jian Li

Few studies have focused on evaluating regular surface roughness and its effect on interfacial shear behavior of the red clay – concrete interface. This paper presents the results of a series of laboratory large-scale direct shear tests conducted using different types of red clay – concrete interfaces. The objective is to examine the effect of surface roughness on these types of soil–concrete interfaces. In the smooth-interface tests, the measured peak and residual shear strength values are very close to each other, with no observed shear dilation. The surface roughness is found to have a remarkable effect on the interfacial shear strength and shear behavior, with the shear strength increasing with increased surface roughness level. The shear dilation is likely to occur on rougher interfaces under lower confining pressure due to the behavior of compressed clay matrices. Owing to the clay matrix’s cohesion and friction, the interfacial shear strength on rough interfaces consists of cohesive and frictional forces between the clay and concrete surfaces. The friction angle value is observed to fluctuate between the clay’s friction angle and the smooth interface’s friction angle. This can be related to the position change of the shear failure slip plane. The confining pressure and surface roughness could change the shear failure plane’s position on the interface. Furthermore, the red clay – structure interface is usually known as the weakest part in the mechanical safety assessment.


Sign in / Sign up

Export Citation Format

Share Document