scholarly journals Editorial: Submarine Active Faults: From Regional Observations to Seismic Hazard Characterization

2021 ◽  
Vol 9 ◽  
Author(s):  
Hector Perea ◽  
Sara Martínez-Loriente ◽  
Jillian Maloney ◽  
Francesco Emanuele Maesano ◽  
Paola Vannucchi
2021 ◽  
Author(s):  
Abeer Al-Ashkar ◽  
Antoine Schlupp ◽  
Matthieu Ferry ◽  
Ulziibat Munkhuu

Abstract. We present new constraints from tectonic geomorphology and paleoseismology along the newly discovered Sharkhai fault near the capital city of Mongolia. Detailed observations from high resolution Pleiades satellite images and field investigations allowed us to map the fault in detail, describe its geometry and segmentation, characterize its kinematics, and document its recent activity and seismic behavior (cumulative displacements and paleoseismicity). The Sharkhai fault displays a surface length of ~40 km with a slightly arcuate geometry, and a strike ranging from N42° E to N72° E. It affects numerous drainages that show left-lateral cumulative displacements reaching 57 m. Paleoseismic investigations document the faulting and deposition record for the last ~3000 yr and reveal that the penultimate earthquake (PE) occurred between 1515 ± 90 BC and 945 ± 110 BC and the most recent event (MRE) occurred after 860 ± 85 AD. The resulting time interval of 2080 ± 470 years is the first constraint on the Sharkhai fault for large earthquakes. On the basis of our mapping of the surface rupture and the resulting segmentation analysis, we propose two possible scenarios for large earthquakes with likely magnitudes between 6.4 ± 0.2 and 7.1 ± 0.2. Furthermore, we apply scaling laws to infer coseismic slip values and derive preliminary estimates of long-term slip rates between 0.2 ± 0.2 and 1.0 ± 0.5 mm/y. Finally, we propose that these original observations and results from a newly discovered fault should be taken into account for the seismic hazard assessment for the city of Ulaanbaatar and help build a comprehensive model of active faults in that region.


Author(s):  
Endra Gunawan

Abstract To estimate the hazard posed by active faults, estimates of the maximum magnitude earthquake that could occur on the fault are needed. I compare previously published scaling relationships between earthquake magnitude and rupture length with data from recent earthquakes in Indonesia. I compile a total amount of 13 literatures on investigating coseismic deformation in Indonesia, which then divided into strike-slip and dip-slip earthquake cases. I demonstrate that a different scaling relationship generates different misfit compared to data. For a practical practice of making seismic hazard model in Indonesia, this research shows the suggested reference for a scaling relationship of strike-slip and dip-slip faulting regime. On a practical approach in constructing a logic tree for seismic hazard model, using different weighting between each published earthquake scaling relationship is recommended.


2017 ◽  
Vol 17 (11) ◽  
pp. 2017-2039 ◽  
Author(s):  
Alessandro Valentini ◽  
Francesco Visini ◽  
Bruno Pace

Abstract. Italy is one of the most seismically active countries in Europe. Moderate to strong earthquakes, with magnitudes of up to ∼ 7, have been historically recorded for many active faults. Currently, probabilistic seismic hazard assessments in Italy are mainly based on area source models, in which seismicity is modelled using a number of seismotectonic zones and the occurrence of earthquakes is assumed uniform. However, in the past decade, efforts have increasingly been directed towards using fault sources in seismic hazard models to obtain more detailed and potentially more realistic patterns of ground motion. In our model, we used two categories of earthquake sources. The first involves active faults, and using geological slip rates to quantify the seismic activity rate. We produced an inventory of all fault sources with details of their geometric, kinematic, and energetic properties. The associated parameters were used to compute the total seismic moment rate of each fault. We evaluated the magnitude–frequency distribution (MFD) of each fault source using two models: a characteristic Gaussian model centred at the maximum magnitude and a truncated Gutenberg–Richter model. The second earthquake source category involves grid-point seismicity, with a fixed-radius smoothed approach and a historical catalogue were used to evaluate seismic activity. Under the assumption that deformation is concentrated along faults, we combined the MFD derived from the geometry and slip rates of active faults with the MFD from the spatially smoothed earthquake sources and assumed that the smoothed seismic activity in the vicinity of an active fault gradually decreases by a fault-size-driven factor. Additionally, we computed horizontal peak ground acceleration (PGA) maps for return periods of 475 and 2475 years. Although the ranges and gross spatial distributions of the expected accelerations obtained here are comparable to those obtained through methods involving seismic catalogues and classical zonation models, the spatial pattern of the hazard maps obtained with our model is far more detailed. Our model is characterized by areas that are more hazardous and that correspond to mapped active faults, while previous models yield expected accelerations that are almost uniformly distributed across large regions. In addition, we conducted sensitivity tests to determine the impact on the hazard results of the earthquake rates derived from two MFD models for faults and to determine the relative contributions of faults versus distributed seismic activity. We believe that our model represents advancements in terms of the input data (quantity and quality) and methodology used in the field of fault-based regional seismic hazard modelling in Italy.


2015 ◽  
pp. 5-19
Author(s):  
Albeiro De Jesús Rendón-Rivera ◽  
John Jairo Gallego-Montoya ◽  
Jenny Paola Jaramillo-Rendón ◽  
Adrián González-Patiño ◽  
José Humberto Caballero-Acosta ◽  
...  

The aim of this investigation was the paleoseismological characterization of eastern Antioquia, using trenches analysis and detailed study of indicators of neotectonic activity, some of which had been reported in previous seismic hazard assessment studies of the Aburra Valley.Through techniques of neotectonic, paleoseismology and also age correlation of Quaternary deposits obtained by several authors, it was found at Alcaravanes site (Marinilla Town), evidences of three seismic events with magnitudes Mw 6.4, 6.6 and 6.5 which displaced recent deposits with maximum ages of 440,000, 37,000 and 8,000 years respectively. Likewise, two prehistoric earthquakes, both with magnitude Mw 6.5 were recognized at the Hamburgo site (Guarne Town), dated between 880,000 and 37,000 years respectively, which proves the existence and activity of La Mosca fault. Finally, the Manantiales site (Rionegro Town) revealed a couple of seismic events with magnitude Mw 6.7 and 6.6 that displaced alluvial terraces in Rio Negro basin with a maximum age of onset of neotectonic deformation of 880,000 years.Latest neotectonic findings change the perspective of seismic hazard in Medellin city and surroundings. Prehistoric earthquakes have occurred in the last million years and created small surface rupture and faulting not related with active mountain fronts. Furthermore, the evidence shows obliterated active faults and efficiency of erosion factors in modeling relief and alluvial fill in the basins of Rionegro Erosion Surface.


2020 ◽  
Author(s):  
Francesco Iezzi ◽  
Gerald Roberts ◽  
Joanna Faure Walker ◽  
Ioannis Papanikolaou ◽  
Athanassios Ganas ◽  
...  

<p>It is important to constrain the spatial distribution of strain-rate in deforming continental material because this underpins calculations of continental rheology and seismic hazard. To do so, it is becoming increasingly common to use combinations of GPS and historical and instrumental seismicity data to constrain regional strain-rate fields. However, GPS geodetic sites, whether permanent or campaign stations, tend to be widely-spaced relative to the spacing of active faults with known Holocene offsets. At the same time, the interpretation of seismicity data can be difficult due to lack of historical seismicity in cases where local fault recurrence intervals are longer than the historical record. This causes uncertainty on how regional strain-rates are partitioned in time and space, and hence with uncertainty regarding calculations of continental rheology and seismic hazard. To overcome this issue, we have gained high temporal resolution slip-rate histories for three parallel faults using in situ <sup>36</sup>Cl cosmogenic dating of the exposure of three parallel normal fault planes that have been progressively exhumed by earthquakes. We study the region around Athens, central Greece, where there also exists a relatively-dense GPS network and extensive records of instrumental and historical earthquakes. This allows to compare regional, decadal strain-rates measured with GPS geodesy with strain-rates across the faults implied by slip since ~40,000 years BP. We show that faults have all had episodic behaviour during the Holocene, with alternating earthquake clusters and periods of quiescence through time. Despite the fact that all three faults have been active in the Holocene, each fault slips in discrete time intervals lasting a few millennia, so that only one fault accommodates strain at any time. We show that magnitudes of strain-rates during the high slip-rate episodes are comparable with the regional strain-rates measured with GPS (fault strain-rates are 50-100% of the value of GPS regional strain-rate). Thus, if the GPS-derived strain-rate applies over longer time intervals, it appears that single faults dominate the strain-accumulation at any given time, with crustal deformation and seismic hazard localised within a distributed network of faults.</p><p> </p>


2011 ◽  
Vol 182 (4) ◽  
pp. 323-336 ◽  
Author(s):  
Christophe Larroque ◽  
Bertrand Delouis ◽  
Jean-Claude Hippolyte ◽  
Anne Deschamps ◽  
Thomas Lebourg ◽  
...  

AbstractThe lower Var valley is the only large outcropping zone of Plio-Quaternary terrains throughout the southwestern Alps. In order to assess the seismic hazard for the Alps – Ligurian basin junction, we investigated this area to provide a record of earthquakes that have recently occurred near the city of Nice. Although no historical seismicity has been indicated for the lower Var valley, our main objective was to identify traces of recent faulting and to discuss the seismogenic potential of any active faults. We organized multidisciplinary observations as a microseismic investigation (the PASIS survey), with morphotectonic mapping and imagery, and subsurface geophysical investigations. The results of the PASIS dense recording survey were disappointing, as no present-day intense microseismic activity was recorded. From the morphotectonic investigation of the lower Var valley, we revealed several morphological anomalies, such as drainage perturbations and extended linear anomalies that are unrelated to the lithology. These anomalies strike mainly NE-SW, with the major Saint-Sauveur – Donareo lineament, clearly related to faulting of the Plio-Pleistocene sedimentary series. Sub-surface geophysical investigation (electrical resistivity tomography profiling) imaged these faults in the shallow crust, and together with the microtectonic data, allow us to propose the timing of recent faulting in this area. Normal and left-lateral strike-slip faulting occurred several times during the Pliocene. From fault-slip data, the last episode of faulting was left-lateral strike-slip and was related to a NNW-SSE direction of compression. This direction of compression is consistent with the present-day state of stress and the Saint-Sauveur–Donareo fault might have been reactivated several times as a left-lateral fault during the Quaternary. At a regional scale, in the Nice fold-and-thrust belt, these data lead to a reappraisal of the NE-SW structural trends as the major potentially active fault system. We propose that the Saint-Sauveur–Donareo fault belongs to a larger system of faults that runs from near Villeneuve-Loubet to the southwest to the Vésubie valley to the north-east. The question of a structural connection between the Vésubie – Mt Férion fault, the Saint-Sauveur–Donareo fault and its possible extension offshore through the northern Ligurian margin is discussed.The Saint-Sauveur–Donareo fault shows two en-échelon segments that extend for about 8 km. Taking into account the regional seismogenic depth (about 10 km), this fault could produce M ~6 earthquakes if activated entirely during one event. Although a moderate magnitude generally yields a moderate seismic hazard, we suggest that this contribution to the local seismic risk is high, taking into account the possible shallow focal depth and the high vulnerability of Nice and the surrounding urban areas.


Sign in / Sign up

Export Citation Format

Share Document