scholarly journals Evaluation of Bone Marrow Texture and Trabecular Changes With Quantitative DCE-MRI and QCT in Alloxan-Induced Diabetic Rabbit Models

2021 ◽  
Vol 12 ◽  
Author(s):  
Pianpian Chen ◽  
Yunfei Zha ◽  
Li Wang ◽  
Liang Li ◽  
Lei Hu ◽  
...  

PurposeTo investigate whether the microvascular permeability of lumbar marrow and bone trabecular changes in early-stage diabetic rabbits can be quantitatively evaluated using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI), quantitative computed tomography, and texture-analyzed permeability parameter Ktrans map of DCE-MRI.Materials and MethodsThis prospective study included 24 rabbits that were randomly assigned to diabetic (n = 14) and control (n = 10) groups. All rabbits underwent sagittal MRI of the lumbar region at 0, 4, 8, 12, and 16 weeks after alloxan injection. Pearson correlation coefficient was performed to determine the correlation between permeability parameter and bone mineral density (BMD). Repeated-measures ANOVA was used to analyze the changes in lumbar BMD over time in each group and the texture parameters of diabetic rabbit lumbar marrow at different time points. Mann–Whitney U rank sum test was used to compare the differences of each index between the two groups and calculate the area under the curve (AUC).ResultsBMD was correlated with Ktrans, Kep, and Ve but not with Vp. At weeks 0–16, the BMD of the rabbits in the diabetic and normal groups was not statistically significant, but the change in BMD showed an overall downward trend. For texture analysis, entropy, energy, and Uniformized positive pixel (UPP) parameters extracted from the Ktrans map showed significant differences from week 0 to 16 between the two groups. The identification ability at 8–12 weeks was higher than that at 12–16 weeks, and the AUCs were 0.734, 0.766, and 0.734, respectively (P < 0.05 for all).ConclusionsThe changes in BMD measured using quantitative computed tomography occurred later than those measured using bone trabecular morphometry. Texture analysis parameters based on DCE-MRI quantitative parameter Ktrans map are feasible to identify early changes in lumbar marrow structure in diabetic rabbits.

2015 ◽  
Vol 26 (3) ◽  
pp. 81-87 ◽  
Author(s):  
Kazutaka YAMADA ◽  
Fumio SATO ◽  
Tohru HIGUCHI ◽  
Kaori NISHIHARA ◽  
Mitsunori KAYANO ◽  
...  

2016 ◽  
Vol 67 (1) ◽  
pp. 28-40 ◽  
Author(s):  
Thomas M. Link

The radiologist has a number of roles not only in diagnosing but also in treating osteoporosis. Radiologists diagnose fragility fractures with all imaging modalities, which includes magnetic resonance imaging (MRI) demonstrating radiologically occult insufficiency fractures, but also lateral chest radiographs showing asymptomatic vertebral fractures. In particular MRI fragility fractures may have a nonspecific appearance and the radiologists needs to be familiar with the typical locations and findings, to differentiate these fractures from neoplastic lesions. It should be noted that radiologists do not simply need to diagnose fractures related to osteoporosis but also to diagnose those fractures which are complications of osteoporosis related pharmacotherapy. In addition to using standard radiological techniques radiologists also use dual-energy x-ray absorptiometry (DXA) and quantitative computed tomography (QCT) to quantitatively assess bone mineral density for diagnosing osteoporosis or osteopenia as well as to monitor therapy. DXA measurements of the femoral neck are also used to calculate osteoporotic fracture risk based on the Fracture Risk Assessment Tool (FRAX) score, which is universally available. Some of the new technologies such as high-resolution peripheral computed tomography (HR-pQCT) and MR spectroscopy allow assessment of bone architecture and bone marrow composition to characterize fracture risk. Finally radiologists are also involved in the therapy of osteoporotic fractures by using vertebroplasty, kyphoplasty, and sacroplasty. This review article will focus on standard techniques and new concepts in diagnosing and managing osteoporosis.


2010 ◽  
Vol 4 (1) ◽  
pp. 181-187 ◽  
Author(s):  
Jonas Jensen ◽  
Casper Bindzus Foldager ◽  
Thomas Vestergaard Jakobsen ◽  
Kjeld Søballe ◽  
Cody Bünger ◽  
...  

We assessed the use of a filler compound together with the osteoinductive demineralized bone matrix (DBM), Colloss E. The filler was comprised of carboxymethyl-cellulose and collagen type 1. The purpose of the study was to see if the filler compound would enhance the bone formation and distribute the osteoinductive stimulus throughout the bone defect. Six sheep underwent a bilateral humerus drill defect. The drill hole was filled with a compound consisting of 100 mg CMC, 100 mg collagen powder, and 1 ccm autologous full blood in one side, and a combination of this filler compound and 20 mg Colloss E in the other. The animals were divided into three groups of two animals and observed for 8, 12 and 16 weeks. Drill holes was evaluated using quantitative computed tomography (QCT), micro computed tomography (µCT) and histomorphometry. Mean total bone mineral density (BMD) of each implantation site was calculated with both QCT and µCT. Bone volume to total volume (BV/TV) was analyzed using µCT and histomorphometry. Although not statistically significant, results showed increased bone BMD after 16 weeks in µCT data and an increased BV/TV after 16 weeks in both µCT and histology. Correlation between QCT and µCT was R2 = 0.804. Correlation between histomorphometry and µCT BV/TV data was R2 = 0.8935 and with an average overrepresentation of 8.2% in histomorphometry. In conclusion the CMC-Collagen + Colloss E filler seems like a viable osteogenic bone filler mid- to long term. A correlation was found between the analytical methods used in this study.


Author(s):  
O Tezol ◽  
Y Balcı ◽  
M Alakaya ◽  
B Gundogan ◽  
EC Cıtak

Introduction: Neurofibromatosis type 1 (NF 1) is an autosomal dominant neurocutaneous disease characterised by multisystemic involvement, including bone tissue. Deformities and reduced bone mass are the main bone manifestations in NF1. Quantitative computed tomography (QCT) provides true volumetric bone mineral density (BMD) measurement. This study aimed to evaluate bone metabolism parameters and BMD in children with NF1 using QCT. Methods: The data of 52 paediatric NF1 patients (23 female, 29 male) was evaluated retrospectively. We investigated anthropometric measurements, biochemical parameters like total calcium, phosphate, magnesium, alkaline phosphatase, 25-hydroxyvitamin D (25OHD), parathyroid hormone, calcitonin, urinary calcium/creatinine ratio, and QCT parameters like lumbar trabecular and cortical BMD, trabecular area and cortical thickness. Comparisons of gender and puberty status were performed. Results: 25% of patients had skeletal deformities and 42.3% had 25OHD inadequacy (< 20 ng/mL). The frequency of 25OHD inadequacy was significantly higher in pubertal/postpubertal patients than prepubertal patients (61.9% vs. 29.0%, p = 0.019). Trabecular BMD Z-score was < −2.0 in 11.5% of patients; all with low BMD were at the pubertal/postpubertal stage. There was a significant negative correlation between age and trabecular Z-score (r = −0.41, p = 0.003). Mean cortical BMD was statistically similar between the genders and puberty groups. Puberty status, anthropometric Z-scores, and biochemical and QCT parameters were statistically similar between the genders (p > 0.05). Conclusion: Paediatric NF1 patients may present with low BMD and 25OHD inadequacy, especially at puberty. QCT may be a useful tool to evaluate trabecular and cortical bone separately in NF1 patients.


2012 ◽  
Vol 39 (6) ◽  
pp. 1215-1220 ◽  
Author(s):  
SYMEON TOURNIS ◽  
VASILIOS SAMDANIS ◽  
SAVAS PSARELIS ◽  
CHRYSA LIAKOU ◽  
JULIA ANTONIOU ◽  
...  

Objective.To investigate the effect of rheumatoid arthritis (RA) on volumetric bone mineral density (vBMD) and bone geometry in postmenopausal women treated with bisphosphonates.Methods.Fifty-three postmenopausal women with RA and 87 control subjects, comparable in terms of age, body mass index, and years since menopause, underwent peripheral quantitative computed tomography (pQCT) of the nondominant tibia.Results.At 4% (trabecular site), trabecular bone mineral content (BMC) and vBMD (p < 0.001) were lower in the RA group, while trabecular area was comparable. At 38% (cortical site), cortical BMC (p < 0.01), area (p < 0.05), and thickness (p < 0.001) were lower in the RA group, whereas vBMD was comparable. Endosteal circumference was higher (p < 0.05), whereas periosteal circumference was comparable, indicating cancellization of cortical bone. In the RA group, muscle area was lower (p < 0.001), while at 14% polar stress strength index was significantly lower (p < 0.01) in patients with RA, indicating impairment of bone mechanical properties.Conclusion.RA is associated with negative effects on both cortical and cancellous bone in postmenopausal women treated with bisphosphonates. Cortical geometric properties are also adversely affected mainly by increased endosteal circumference, whereas trabecular geometric properties are generally preserved.


Sign in / Sign up

Export Citation Format

Share Document