scholarly journals State of the Art and Perspectives of Wave Energy in the Mediterranean Sea: Backstage of ISWEC

2019 ◽  
Vol 7 ◽  
Author(s):  
Giuliana Mattiazzo
2021 ◽  
Vol 302 ◽  
pp. 117492
Author(s):  
Andrea Lira-Loarca ◽  
Francesco Ferrari ◽  
Andrea Mazzino ◽  
Giovanni Besio

Author(s):  
Felice Arena ◽  
Alessandra Romolo ◽  
Giovanni Malara ◽  
Alfredo Ascanelli

Since the nineties, the OWC (Oscillating Water Column) plants were developed at full scale to produce electrical power from ocean waves [1]. A prototype was built into a caisson breakwater of the Sakata Port, in Japan; other plants were built in India, in Scotland at Islay, in Portugal at the Azores. A new plant was built in Mutriku (Spain) recently. A new kind of OWC caisson, named U-OWC or REWEC3, was proposed by Boccotti [2]. With respect to a traditional OWC, a U-OWC plant includes an additional vertical duct, which enables to tune the eigenperiod of the plant to the peak period of the wave pressures acting on the converter-breakwater. In this way, resonance conditions can be reached without phase control devices and the wave pressures into the air pocket are increased in amplitude, amplifying the performance of the plant. In 2012, a full scale U-OWC (REWEC3) breakwater has been designed in Italy, for the harbour of Civitavecchia (the port of Rome – Port Authority of Civitavecchia). Such a breakwater embodies 19 caissons, each including 8 cells, 34m long. The paper disseminates the key issues pertaining the design stage. Further, it describes the main phases of the construction stage. The building of the caisson started in October 2012. The first caisson has been completed at the end of 2012. It is the first device for wave energy in the Mediterranean Sea and one of the biggest in the world.


Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4764
Author(s):  
Evangelia Dialyna ◽  
Theocharis Tsoutsos

A detailed review of wave energy resource assessment and the state-of-the-art of deployed wave energy converters (WECs) in real environmental conditions in the Mediterranean Sea have been analysed in this study. The installed power of the several deployed WECs in the Mediterranean Sea varies between 3–2500 kW. Ten project cases of deployed WECs in the basin are presented, with their analysis of the essential features. Five different types of WEC have already been tested under real environmental conditions in Italy, Greece, Israel and Gibraltar, with Italy being the Mediterranean country with the most deployed WECs. The main questions of the relevant studies were the ongoing trends, the examination of WECs in combination with other renewable sources, the utilising of WECs for desalination, and the prospects of wave energy in the Mediterranean islands and ports. This paper is the first comprehensive study that overviews the recent significant developments in the wave energy sector in the Mediterranean countries. The research concludes that the advances of the wave energy sector in the Mediterranean Sea are significant. However, in order to commercialise WECs and wave energy exploitation to become profitable, more development is necessary.


1997 ◽  
Vol 119 (3) ◽  
pp. 184-190 ◽  
Author(s):  
M. T. Pontes ◽  
S. Barstow ◽  
L. Bertotti ◽  
L. Cavaleri ◽  
H. Oliveira-Pires

In the last two decades the performance of numerical wind-wave models has improved considerably. Several models have been routinely producing good quality wave estimates globally since the mid-1980s. The verifications of wind-wave models have mainly focused on the evaluation of the error of the significant wave height Hs estimates. However, for wave energy purposes, the main parameters to be assessed are the wave power Pw and the mean (energy) period Te. Since Pw is proportional to Hs2 Tc, its expected error is much larger than for the single-wave parameters. This paper summarizes the intercomparison of two wind-wave models against buoy data in the North Atlantic and the Mediterranean Sea to select the most suitable one for the construction of an Atlas of the wave energy resource in European waters. A full verification in the two basins of the selected model—the WAM model implemented in the routine operation of the European Centre for Medium-Range Weather Forecasts—was then performed against buoy and satellite altimeter data. It was found that the WAM model accuracy is very good for offshore locations in the North Atlantic; but for the Mediterranean Sea the results are much less accurate, probably due to a lower quality of the input wind fields.


Sign in / Sign up

Export Citation Format

Share Document