scholarly journals Cathode–Sulfide Solid Electrolyte Interfacial Instability: Challenges and Solutions

Author(s):  
Teerth Brahmbhatt ◽  
◽  
Guang Yang ◽  
Ethan Self ◽  
Jagjit Nanda ◽  
...  

All-solid-state batteries are a candidate for next-generation energy-storage devices due to potential improvements in energy density and safety compared to current battery technologies. Due to their high ionic conductivity and potential scalability through slurry processing routes, sulfide solid-state electrolytes are promising to replace traditional liquid electrolytes and enable All-solid-state batteries, but stability of cathode-sulfide solid-state electrolytes interfaces requires further improvement. Herein we review common issues encountered at cathode-sulfide SE interfaces and strategies to alleviate these issues.

Metals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1523
Author(s):  
Lilian Schwich ◽  
Michael Küpers ◽  
Martin Finsterbusch ◽  
Andrea Schreiber ◽  
Dina Fattakhova-Rohlfing ◽  
...  

In the coming years, the demand for safe electrical energy storage devices with high energy density will increase drastically due to the electrification of the transportation sector and the need for stationary storage for renewable energies. Advanced battery concepts like all-solid-state batteries (ASBs) are considered one of the most promising candidates for future energy storage technologies. They offer several advantages over conventional Lithium-Ion Batteries (LIBs), especially with regard to stability, safety, and energy density. Hardly any recycling studies have been conducted, yet, but such examinations will play an important role when considering raw materials supply, sustainability of battery systems, CO2 footprint, and general strive towards a circular economy. Although different methods for recycling LIBs are already available, the transferability to ASBs is not straightforward due to differences in used materials and fabrication technologies, even if the chemistry does not change (e.g., Li-intercalation cathodes). Challenges in terms of the ceramic nature of the cell components and thus the necessity for specific recycling strategies are investigated here for the first time. As a major result, a recycling route based on inert shredding, a subsequent thermal treatment, and a sorting step is suggested, and transferring the extracted black mass to a dedicated hydrometallurgical recycling process is proposed. The hydrometallurgical approach is split into two scenarios differing in terms of solubility of the ASB-battery components. Hence, developing a full recycling concept is reached by this study, which will be experimentally examined in future research.


2020 ◽  
Vol 7 (5) ◽  
pp. 1246-1278 ◽  
Author(s):  
Xiaolong Xu ◽  
Kwan San Hui ◽  
Kwun Nam Hui ◽  
Hao Wang ◽  
Jingbing Liu

High-ionic-conductivity solid-state electrolytes (SSEs) have been extensively explored for electrochemical energy storage technologies because these materials can enhance the safety of solid-state energy storage devices (SSESDs).


2019 ◽  
Vol 7 (37) ◽  
pp. 21299-21308 ◽  
Author(s):  
Semih Afyon ◽  
Kostiantyn V. Kravchyk ◽  
Shutao Wang ◽  
Jan van den Broek ◽  
Christian Hänsel ◽  
...  

All-solid-state batteries provide new opportunities to realize safe, non-flammable, and temperature-tolerant energy storage and display a huge potential to be the core of future energy storage devices.


Author(s):  
Diego Holanda Pereira de Souza ◽  
Kasper T. Møller ◽  
Stephen A. Moggach ◽  
Terry D Humphries ◽  
Anita D’Angelo ◽  
...  

Metal boron-hydrogen compounds are considered as promising solid electrolyte candidates for the development of all-solid-state batteries (ASSB), owing to the high ionic conductivity exhibited by closo- and nido-boranes. In this...


2019 ◽  
Vol 7 (29) ◽  
pp. 17581-17593 ◽  
Author(s):  
Zhiqian Cao ◽  
Haibo Hu ◽  
Mingzai Wu ◽  
Kun Tang ◽  
Tongtong Jiang

Planar all-solid-state rechargeable Zn–air batteries with superior energy efficiency demonstrate a novel design for compact all-solid-state rechargeable ZABs towards next-generation wearable energy storage devices with high energy density and safety.


2020 ◽  
Vol 8 (6) ◽  
pp. 2875-2897 ◽  
Author(s):  
Prem Wicram Jaschin ◽  
Yirong Gao ◽  
Yao Li ◽  
Shou-Hang Bo

As economically viable alternatives to lithium-ion batteries, magnesium-ion-based all-solid-state batteries have been researched to meet the criteria for an ideal energy storage device.


2019 ◽  
Vol 7 (16) ◽  
pp. 9748-9760 ◽  
Author(s):  
Linchun He ◽  
Chao Chen ◽  
Masashi Kotobuki ◽  
Feng Zheng ◽  
Henghui Zhou ◽  
...  

All-solid-state Li-ion batteries (ASSLiB) have been considered to be the next generation energy storage devices that can overcome safety issues and increase the energy density by replacing the organic electrolyte with inflammable solid electrolyte.


Sign in / Sign up

Export Citation Format

Share Document