scholarly journals Review and Survey of Methods for Analysis of Impurities in Hydrogen for Fuel Cell Vehicles According to ISO 14687:2019

2021 ◽  
Vol 8 ◽  
Author(s):  
Claire Beurey ◽  
Bruno Gozlan ◽  
Martine Carré ◽  
Thomas Bacquart ◽  
Abigail Morris ◽  
...  

Gaseous hydrogen for fuel cell electric vehicles must meet quality standards such as ISO 14687:2019 which contains maximal control thresholds for several impurities which could damage the fuel cells or the infrastructure. A review of analytical techniques for impurities analysis has already been carried out by Murugan et al. in 2014. Similarly, this document intends to review the sampling of hydrogen and the available analytical methods, together with a survey of laboratories performing the analysis of hydrogen about the techniques being used. Most impurities are addressed, however some of them are challenging, especially the halogenated compounds since only some halogenated compounds are covered, not all of them. The analysis of impurities following ISO 14687:2019 remains expensive and complex, enhancing the need for further research in this area. Novel and promising analyzers have been developed which need to be validated according to ISO 21087:2019 requirements.

2018 ◽  
Author(s):  
Marianne Mintz ◽  
Catherine Mertes ◽  
Eric Stewart ◽  
Stephanie Burr

2018 ◽  
Vol 9 (1) ◽  
pp. 2 ◽  
Author(s):  
Peter Speers

Hydrogen Mobility Europe (H2ME, 2015–2022) is the largest European Fuel Cells and Hydrogen Joint Undertaking (EU FCH JU)-funded hydrogen light vehicle and infrastructure demonstration. Up until April 2017, the 40 Daimler passenger car fuel cell electric vehicles (FCEVs) and 62 Symbio Fuel Cell-Range Extended Electric Vans (FC-REEV)-vans deployed by the project drove 625,300 km and consumed a total of 7900 kg of hydrogen with no safety incidents. During its first year of operation (to April 2017), the NEL Hydrogen Fueling HRS (hydrogen refuelling station) in Kolding, Denmark dispensed 900 kg of hydrogen, and demonstrated excellent reliability (98.2% availability) with no safety incidents. The average hydrogen refuelling time for passenger cars is comparable to that for conventional vehicles (2–3 min).


Author(s):  
Chris San Marchi ◽  
Junichiro Yamabe ◽  
Martina Schwarz ◽  
Hisao Matsunaga ◽  
Stefan Zickler ◽  
...  

Methods to qualify materials for hydrogen service are needed in the global marketplace to enable sustainable, low-carbon energy technologies, such as hydrogen fuel cell electric vehicles. Existing requirements for qualifying materials are not adequate to support growth of hydrogen technology as well as being inconsistent with the growing literature on the effects of hydrogen on fracture and fatigue. This report documents an internationally coordinated effort to develop a test method for qualifying materials for high-pressure hydrogen fuel system onboard fuel cell electric vehicles. In particular, consistency of fatigue life testing strategies is discussed. Fatigue life tests were conducted at three different institutes in high-pressure gaseous hydrogen (90 MPa) at low temperature (233K) to confirm consistency across distinct testing platforms. The testing campaign includes testing of both smooth and notched axial fatigue specimens at various combinations of pressure and temperature. Collectively these testing results provide insight to the sensitivity of fatigue life testing to important testing parameters such as pressure, temperature and the presence of stress concentrations.


Energies ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 252
Author(s):  
Ioan-Sorin Sorlei ◽  
Nicu Bizon ◽  
Phatiphat Thounthong ◽  
Mihai Varlam ◽  
Elena Carcadea ◽  
...  

With the development of technologies in recent decades and the imposition of international standards to reduce greenhouse gas emissions, car manufacturers have turned their attention to new technologies related to electric/hybrid vehicles and electric fuel cell vehicles. This paper focuses on electric fuel cell vehicles, which optimally combine the fuel cell system with hybrid energy storage systems, represented by batteries and ultracapacitors, to meet the dynamic power demand required by the electric motor and auxiliary systems. This paper compares the latest proposed topologies for fuel cell electric vehicles and reveals the new technologies and DC/DC converters involved to generate up-to-date information for researchers and developers interested in this specialized field. From a software point of view, the latest energy management strategies are analyzed and compared with the reference strategies, taking into account performance indicators such as energy efficiency, hydrogen consumption and degradation of the subsystems involved, which is the main challenge for car developers. The advantages and disadvantages of three types of strategies (rule-based strategies, optimization-based strategies and learning-based strategies) are discussed. Thus, future software developers can focus on new control algorithms in the area of artificial intelligence developed to meet the challenges posed by new technologies for autonomous vehicles.


2020 ◽  
Vol 50 (2) ◽  
pp. 165-176 ◽  
Author(s):  
Wojciech Gis

AbstractHydrogen can have great importance in seven areas of necessary changes in the transformation of the power system, including transport (especially motor transport), industrial processes, thermal and energy production in the construction industry and production processes. Hydrogen fuel cell electric vehicles (FCEVs) do not cause local air pollution because they have zero “tailpipe” emissions. Essential are ecological and func-tional aspects of operating vehicles equipped with fuel cells. However, noteworthy is also the development of the refilling infrastructure. The functionality of FCEVs to a considerable degree depends on the functionality of fuel cells.


MTZ worldwide ◽  
2021 ◽  
Vol 82 (9) ◽  
pp. 58-63
Author(s):  
Maximilian Pietruck ◽  
Christoph Massonet ◽  
Damian Backes ◽  
Lutz Eckstein

Catalysts ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 393
Author(s):  
Zhemin Du ◽  
Congmin Liu ◽  
Junxiang Zhai ◽  
Xiuying Guo ◽  
Yalin Xiong ◽  
...  

Nowadays, we face a series of global challenges, including the growing depletion of fossil energy, environmental pollution, and global warming. The replacement of coal, petroleum, and natural gas by secondary energy resources is vital for sustainable development. Hydrogen (H2) energy is considered the ultimate energy in the 21st century because of its diverse sources, cleanliness, low carbon emission, flexibility, and high efficiency. H2 fuel cell vehicles are commonly the end-point application of H2 energy. Owing to their zero carbon emission, they are gradually replacing traditional vehicles powered by fossil fuel. As the H2 fuel cell vehicle industry rapidly develops, H2 fuel supply, especially H2 quality, attracts increasing attention. Compared with H2 for industrial use, the H2 purity requirements for fuel cells are not high. Still, the impurity content is strictly controlled since even a low amount of some impurities may irreversibly damage fuel cells’ performance and running life. This paper reviews different versions of current standards concerning H2 for fuel cell vehicles in China and abroad. Furthermore, we analyze the causes and developing trends for the changes in these standards in detail. On the other hand, according to characteristics of H2 for fuel cell vehicles, standard H2 purification technologies, such as pressure swing adsorption (PSA), membrane separation and metal hydride separation, were analyzed, and the latest research progress was reviewed.


Sign in / Sign up

Export Citation Format

Share Document