scholarly journals Electric Vehicles Charging Management System for Optimal Exploitation of Photovoltaic Energy Sources Considering Vehicle-to-Vehicle Mode

2021 ◽  
Vol 9 ◽  
Author(s):  
Francesco Lo Franco ◽  
Riccardo Mandrioli ◽  
Mattia Ricco ◽  
Vítor Monteiro ◽  
Luís F. C. Monteiro ◽  
...  

The growing penetration of distributed renewable energy sources (RES) together with the increasing number of new electric vehicle (EV) model registrations is playing a significant role in zero-carbon energy communities’ development. However, the ever-larger share of intermittent renewable power plants, combined with the high and uncontrolled aggregate EV charging demand, requires an evolution toward new planning and management paradigms of energy districts. Thus, in this context, this paper proposes novel smart charging (SC) techniques that aim to integrate as much as possible RES generation and EV charging demand at the local level, synergically acting on power flows and avoiding detrimental effects on the electrical power system. To make this possible, a centralized charging management system (CMS) capable of individually modulating each charging power of plugged EVs is presented in this paper. The CMS aims to maximize the charging self-consumption from local RES, flattening the peak power required to the external grid. Moreover, the CMS guarantees an overall good state of charge (SOC) at departure time for all the vehicles without requiring additional energy from the grid even under low RES power availability conditions. Two methods that differ as a function of the EV power flow direction are proposed. The first SC only involves unidirectional power flow, while the second one also considers bidirectional power flow among vehicles, operating in vehicle-to-vehicle (V2V) mode. Finally, simulations, which are presented considering an actual case study, validate the SC effects on a reference scenario consisting of an industrial area having a photovoltaic (PV) plant, non-modulable electrical loads, and EV charging stations (CS). Results are collected and performance improvements by operating the different SC methods are compared and described in detail in this paper.

Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4270
Author(s):  
Gianpiero Colangelo ◽  
Gianluigi Spirto ◽  
Marco Milanese ◽  
Arturo de Risi

In the last years, a change in the power generation paradigm has been promoted by the increasing use of renewable energy sources combined with the need to reduce CO2 emissions. Small and distributed power generators are preferred to the classical centralized and sizeable ones. Accordingly, this fact led to a new way to think and design distributions grids. One of the challenges is to handle bidirectional power flow at the distribution substations transformer from and to the national transportation grid. The aim of this paper is to review and analyze the different mathematical methods to design the architecture of a distribution grid and the state of the art of the technologies used to produce and eventually store or convert, in different energy carriers, electricity produced by renewable energy sources, coping with the aleatory of these sources.


2013 ◽  
Vol 768 ◽  
pp. 3-8 ◽  
Author(s):  
M. Venmathi ◽  
R. Ramaprabha

This paper presents the comparative dynamic analysis of full bridge and half bridge three port dc-dc converter topology interfacing the renewable energy sources along with the energy storage devices. The three port converter comprises the active bridge circuit and the three winding transformer. It uses single power conversion stage with high frequency link to control power flow between the batteries, load and the renewable energy sources. The power flow between the ports is controlled by phase shifting the square wave outputs of the active bridges in combination with pulse width modulation (PWM) technique. The analysis reveals that the battery discharges when the source is not sufficient to supply the load and it was charged when the source alone is capable of supplying the load. Hence there is a bidirectional power flow in the storage port when there is a transition in the source.


Energies ◽  
2019 ◽  
Vol 12 (2) ◽  
pp. 221 ◽  
Author(s):  
C. Anuradha ◽  
N. Chellammal ◽  
Md Saquib Maqsood ◽  
S. Vijayalakshmi

An efficient way of synthesizing a three port non-isolated converter from a single-ended primary inductor converter (SEPIC) is proposed in this paper. The primary SEPIC converter is split into a source cell and a load cell. Two such source cells are integrated through direct current (DC) link capacitors with a common load cell to generate a three-port SEPIC converter. The derived converter features single-stage power conversion with reduced structural complexity and bidirectional power flow capability. For bidirectional power flow, it incorporates a battery along with an auxiliary photovoltaic source. Mathematical analyses were carried out to describe the operating principles and design considerations. Experiments were performed on an in-house-built prototype three-port unidirectional converter, and the results are presented to validate the feasibility of the designed converter.


2019 ◽  
Vol 9 (8) ◽  
pp. 1658 ◽  
Author(s):  
Muhammad Kashif Rafique ◽  
Saad Ullah Khan ◽  
Muhammad Saeed Uz Zaman ◽  
Khawaja Khalid Mehmood ◽  
Zunaib Maqsood Haider ◽  
...  

Compelled by environmental and economic reasons and facilitated by modern technological advancements, the share of hybrid energy systems (HES) is increasing at modern smart house (SH) level. This work proposes an intelligent hybrid energy management system (IHEMS) for an SH connected to a power network that allows a bidirectional power flow. The SH has electrical and thermal power loops, and its main components include renewable energy from wind and photovoltaics, electric vehicle (EV), battery energy storage system, a fuel cell which serves as a micro-combined heat and power system, and a boiler. The proposed IHEMS models the components of the SH, defines their constraints, and develops an optimization model based on the real coded genetic algorithm. The key features of the developed IHEMS are highlighted under six simulation cases considering different configurations of the SH components. Moreover, the standard EV charging techniques are compared, and it is observed that the charging method which is flexible in timing and power injection to the EV is best suited for the economic operation of the SH. The simulation results reveal that the proposed IHEMS minimizes the 24-hour operational cost of the SH by optimally scheduling the energy resources and loads.


2021 ◽  
Vol 13 (3) ◽  
pp. 1569
Author(s):  
Namki Choi ◽  
Byongjun Lee ◽  
Dohyuk Kim ◽  
Suchul Nam

System strength is an important concept in the integration of renewable energy sources (RESs). However, evaluating system strength is becoming more ambiguous due to the interaction of RESs. This paper proposes a novel scheme to define the actual interaction boundaries of RESs using the power flow tracing strategy. Based on the proposed method, the interaction boundaries of RESs were identified at the southwest side of Korea Electric Power Corporation (KEPCO) systems. The test results show that the proposed approach always provides the identical interaction boundaries of RESs in KEPCO systems, compared to the Electric Reliability Council of Texas (ERCOT) method. The consistent boundaries could be a guideline for power-system planners to assess more accurate system strength, considering the actual interactions of the RESs.


2021 ◽  
Vol 69 (2) ◽  
pp. 21-30
Author(s):  
Nasreddine ATTOU ◽  
Sid-Ahmed ZIDI ◽  
Mohamed KHATIR ◽  
Samir HADJERI

Energy management in grid-connected Micro-grids (MG) has undergone rapid evolution in recent times due to several factors such as environmental issues, increasing energy demand and the opening of the electricity market. The Energy Management System (EMS) allows the optimal scheduling of energy resources and energy storage systems in MG in order to maintain the balance between supply and demand at low cost. The aim is to minimize peaks and fluctuations in the load and production profile on the one hand, and, on the other hand, to make the most of renewable energy sources and energy exchanges with the utility grid. In this paper, our attention has been focused on a Rule-based energy management system (RB EMS) applied to a residential multi-source grid-connected MG. A Microgrid model has been implemented that combines distributed energy sources (PV, WT, BESS), a number of EVs equipped with the Vehicle to Grid technology (V2G) and variable load. Different operational scenarios were developed to see the behaviour of the implemented management system during the day, including the random demand profile of EV users, the variation in load and production, grid electricity price variation. The simulation results presented in this paper demonstrate the efficacy of the suggested EMS and confirm the strategy's feasibility as well as its ability to properly share power among different sources, loads and vehicles by obeying constraints on each element.


Author(s):  
P Annapandi ◽  
R Banumathi ◽  
NS Pratheeba ◽  
A Amala Manuela

In this paper, the optimal power flow management-based microgrid in hybrid renewable energy sources with hybrid proposed technique is presented. The photovoltaic, wind turbine, fuel cell and battery are also presented. The proposed technique is the combined execution of both spotted hyena optimization and elephant herding optimization. Spotted hyena optimization is utilized to optimize the combination of controller parameters based on the voltage variation. In the proposed technique, the spotted hyena optimization combined with elephant herding optimization plays out the assessment procedure to establish the exact control signals for the system and builds up the control signals for offline way in light of the power variety between source side and load side. The objective function is defined by the system data subject to equality and inequality constraints such as real and reactive power limits, power loss limit, and power balance of the system and so on. The constraint is the availability of the renewable energy sources and power demand from the load side in which the battery is used only for lighting load. By utilizing the proposed method, the power flow constraints are restored into secure limits with the reduced cost. At that point, the proposed model is executed in the Matrix Laboratory/Simulink working platform and the execution is assessed with the existing techniques. In this article, the performance analysis of proposed and existing techniques such as elephant herding optimization, particle swarm optimization, and bat algorithm are evaluated. Furthermore, the statistical analysis is also performed. The result reveals that the power flow of the hybrid renewable energy sources by the proposed method is effectively managed when compared with existing techniques.


Sign in / Sign up

Export Citation Format

Share Document