scholarly journals Influence of Direct Current–Voltage Accompanied by Charge Flow on CO2 Hydrate Formation

2021 ◽  
Vol 9 ◽  
Author(s):  
Qi Zhao ◽  
Zhi-Ming Xia ◽  
Chun-Gang Xu ◽  
Zhao-Yang Chen ◽  
Xiao-Sen Li

The capture and storage of carbon dioxide (CO2) are urgent and crucial to achieve the goal of carbon neutrality. Hydrate-based CO2 capture technology is one of the promising technologies for capturing and storing CO2. This work studied the nucleation and growth of CO2 hydrate provoked by direct current–voltage accompanied by charge flow with the agitation of 450 rpm at an initial pressure of 3.5 MPa and a temperature of 274.15 K. The results show that the physical bubble behavior and electrochemistry mechanisms could influence CO2 hydrate formation process in the application of voltage. The induction time and semi-completion time of CO2 hydrate formation were decreased by 51% and 27.8% in the presence of 15 V, respectively. However, more product of electrolysis, Joule heat and ions, could inhibit the CO2 hydrate formation process in the application of a high voltage (60 V). In addition, a high voltage (60 V) could change the morphology characteristics of CO2 hydrate from gel-like to whisker-like. This study provides valuable information on the formation of CO2 hydrate under the action of charge flow.

2011 ◽  
Vol 354-355 ◽  
pp. 993-997
Author(s):  
Xing Qi He

A blocking accident was described which was caused by the architectural design bug of high-voltage direct current voltage divider. The bug of DC voltage divider architecture design was pointed out through the analysis, and the appropriate solutions for the similar bug or hidden trouble in high-voltage DC transmission system was proposed.


2017 ◽  
Vol 893 ◽  
pp. 118-121 ◽  
Author(s):  
Bo Xing ◽  
Chun Cheng Zuo ◽  
Feng Li Huang ◽  
Ye Bo Lu ◽  
Guang Shan Hu

The effect of electrode distance on jetting behavior of non-particle nanoAg conductive ink during Electrohydrodynamics (EHD) under the direct current voltage is investigated. Experiments results indicate that the height of the meniscus increases while the curve decreases with the increase of electrode distance, and the jetting behavior evolves from pulsate cone jetting to pulsate micro dripping jetting. The low voltage combined with long electrode distance resulted in returning of meniscus to its original shape. With the increase of voltage, the increased electrode distance result in the increase of meniscus deformation and the electrode distance for maintaining the stable jetting was increased. Under the same voltage, the line width increases with the increase of electrode distance. The exceeded long electrode distance and high voltage resulted in jitter of elongated meniscus thus is not beneficial for the printing quality control.


Author(s):  
Jing Bai ◽  
Gengbiao Xie ◽  
Lingqian Li ◽  
Pan Li ◽  
Shuqi Fang ◽  
...  

Abstract The absorption of carbon dioxide by hydrates is considered as one of the potential methods for carbon capture and storage. In this work, a new impinging stream reactor was designed to investigate the characteristics of carbon dioxide hydrate formation process. The experiments were carried out at different pressure, temperature and impinging strength. It was shown that the carbon dioxide hydrate formation process could be enhanced by the impinging stream technique. With the increased of impinging strength, both gas consumption and hydration rate were increased. In addition, initial pressure and temperature also had an effect on the carbon dioxide hydrate formation process. Moreover, the kinetics of carbon dioxide hydrate formation was discussed. When the initial pressure was 3.5 MPa and impinging strength was 0.21, the activation energy was 24.74 kJ/mol, which was similar to the experimental data available in the literature.


Author(s):  
Wenyu Zhang ◽  
Kohei Ohara ◽  
Yasunao Okamoto ◽  
Erika Nawa-Okita ◽  
Daigo Yamamoto ◽  
...  

Author(s):  
Min Li ◽  
Peng Wu ◽  
Shanshan Zhou ◽  
Lunxiang Zhang ◽  
Lei Yang ◽  
...  

2021 ◽  
Author(s):  
Rukuan Chai ◽  
Yuetian Liu ◽  
Yuting He ◽  
Qianjun Liu ◽  
Wenhuan Gu

Abstract Tight oil reservoir plays an increasingly important role in the world energy system, but its recovery is always so low. Hence, a more effective enhanced oil recovery (EOR) technology is urgently needed. Meanwhile, greenhouse effect is more and more serious, a more effective carbon capture and sequestration (CCS) method is also badly needed. Direct current voltage assisted carbonated water-flooding is a new technology that combines direct current voltage with carbonated water-flooding to enhance oil recovery and CO2 sequestration efficiency, simultaneously. Experimental studies were conducted from macroscopic-scale to microscopic-scale to study the performance and mechanism of direct current voltage assisted carbonated water-flooding. Firstly, core flood experiments were implemented to study the effect of direct current voltage assisted carbonated water on oil recovery and CO2 sequestration efficiency. Secondly, contact angle and interfacial tension/dilatational rheology were measured to analyze the effect of direct current voltage assisted carbonated water on crude oil-water-rock interaction. Thirdly, total organic carbon (TOC), gas chromatography (GC), and electrospray ionization-fourier transform ion cyclotron resonance-mass spectrometry (ESI FT ICR-MS) were used to investigate the organic composition change of produced effluents and crude oil in direct current voltage assisted carbonated water treatment. Through direct current voltage assisted carbonated water-flooding experiments, the following results can be obtained. Firstly, direct current voltage assisted carbonated waterflooding showed greater EOR capacity and CO2 sequestration efficiency than individual carbonated water and direct current voltage treatment. With the increase of direct current voltage, oil recovery increases to 38.67% at 1.6V/cm which much higher than 29.07% of carbonated water-flooding and then decreases, meanwhile, CO2 output decreases to only 35.5% at 1.6V/cm which much lower than 45.6% of carbonated water-flooding and then increases. Secondly, in direct current voltage assisted carbonated water-flooding, the wettability alteration is mainly caused by carbonated water and the effect of direct current can be neglected. While both carbonated water and direct current have evident influence on interfacial properties. Herein, with direct current voltage increasing, the interfacial tension firstly decreases and then increases, the interfacial viscoelasticity initially strengthens and then weakens. Thirdly, GC results indicated that crude oil cracking into lighter components occurs during direct current voltage assisted carbonated water-flooding, with the short-chain organic components increasing and the long-chain components decreasing. Meanwhile, TOC and ESI FT ICR-MS results illustrated that CO2 electroreduction do occur in direct current voltage assisted carbonated water-flooding with the dissolved organic molecules increases and the emergence of formic acid. Conclusively, the synergy of CO2 electrochemical reduction into formic acid in aqueous solution and the long-chain molecules electrostimulation pyrolysis into short ones in crude oil mutually resulted in the enhancement of crude oil-carbonated water interaction. This paper proposed a new EOR & CCS technology-direct current voltage assisted carbonated water-flooding. It showed great research and application potential on tight oil development and greenhouse gas control. More work needs to be done to further explore its mechanism. This paper constructs a multiscale & interdisciplinary research system to study the multidisciplinary (EOR&CCS) problem. Specifically, a series connected physical (Core displacement, Contact angle, and Interfacial tension/rheology measurements) and chemistry (TOC, GS, and ESI FT ICR-MS) experiments are combined to explore its regularity and several physics (Atomic physics) and chemistry (Electrochemistry/Inorganic Chemistry) theories are applied to explain its mechanisms.


2019 ◽  
Vol 294 ◽  
pp. 111608 ◽  
Author(s):  
Ali Al-Sowadi ◽  
Hadi Roosta ◽  
Ali Dashti ◽  
S. Arash Pakzad ◽  
Reza Ghasemian ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document