scholarly journals A Kernel for Calculating PEM Fuel Cell Distribution of Relaxation Times

2021 ◽  
Vol 9 ◽  
Author(s):  
Andrei Kulikovsky

Impedance of all oxygen transport processes in PEM fuel cell has negative real part in some frequency domain. A kernel for calculation of distribution of relaxation times (DRT) of a PEM fuel cell is suggested. The kernel is designed for capturing impedance with negative real part and it stems from the equation for impedance of oxygen transport through the gas-diffusion transport layer (doi:10.1149/2.0911509jes). Using recent analytical solution for the cell impedance, it is shown that DRT calculated with the novel K2 kernel correctly captures the GDL transport peak, whereas the classic DRT based on the RC-circuit (Debye) kernel misses this peak. Using K2 kernel, analysis of DRT spectra of a real PEMFC is performed. The leftmost on the frequency scale DRT peak represents oxygen transport in the channel, and the rightmost peak is due to proton transport in the cathode catalyst layer. The second, third, and fourth peaks exhibit oxygen transport in the GDL, faradaic reactions on the cathode side, and oxygen transport in the catalyst layer, respectively.

2020 ◽  
Vol 22 (34) ◽  
pp. 19131-19138 ◽  
Author(s):  
Andrei Kulikovsky

A simple method for DRT calculation is developed and applied to understand oxygen transport in the catalyst layer of a PEM fuel cell.


Author(s):  
Andrei Kulikovsky

Abstract An analytical model for impedance of oxygen transport in the gas--diffusion layer (GDL) and cathode channel of a PEM fuel cell was developed. The model is based on transient oxygen mass conservation equations coupled to the proton current conservation equation in the catalyst layer. An analytical formula for the ``GDL+channel'' impedance was derived assuming that the oxygen and proton transport in the cathode catalyst layer (CCL) are fast. In the Nyquist plot, the resulting impedance consisted of two arcs describing oxygen transport in the air channel (low--frequency arc) and in the GDL. The characteristic frequency of GDL arc depends on the CCL thickness: large CCL thickness strongly lowers this frequency. At small CCL thickness, the high--frequency feature on the arc shape forms. This effect is important for identification of peaks in distribution of relaxation times spectra of low--Pt PEMFCs.


Author(s):  
Dirk Rensink ◽  
Jo¨rg Roth ◽  
Stephan Fell

In a polymer electrolyte membrane (PEM) fuel cell water is produced by electrochemical reactions in the catalyst layer on the cathode side. The water diffuses through the catalyst layer and a fibrous substrate into gas channels where it is transported away by convection. The fibrous substrate represents the gas diffusion media (GDM). Sometimes the GDM has a thin microporous layer on the side facing the catalyst layer. The same layer structure can be found on the anode side. All layers together are the porous layers of a PEM fuel cell. Under certain operating conditions condensation can occur in the porous layers which might lead to flooding conditions and — if the liquid water forms droplets which grow together in the gas channels — the complete blockage of the channels. Both situations can lead to a local starvation of reactant gases with negative impact on fuel cell performance and durability. The void space of the hydrophobic fibrous substrate in a PEM fuel cell can be interpreted as micro channels in a broader sense, especially if liquid phase transport from the catalyst layer towards the gas channels is in focus. Due to the small dimensions with effective channel diameter in the range of micrometer the flow of liquid water is governed by capillary forces. The same applies for the gas channels at low gas velocities since the Bond and Capillary numbers are well below one. Thus the investigation of liquid water flow and distribution under low gas velocities in the hydrophobic fibrous substrate and the spreading of liquid water along the hydrophilic gas channel walls under capillary action is of special interest for PEM fuel cells and investigated here.


Author(s):  
Dusan Spernjak ◽  
Suresh Advani ◽  
Ajay K. Prasad

Liquid water formation and transport was investigated by direct experimental visualization in an operational transparent single-serpentine PEM fuel cell. We examined the effectiveness of various gas diffusion layer (GDL) materials in removing water away from the cathode and through the flow field over a range of operating conditions. Complete polarization curves as well as time evolution studies after step changes in current draw were obtained with simultaneous liquid water visualization within the transparent cell. At similar current density (i.e. water production rate), lower level of cathode flow field flooding indicated that liquid water had been trapped inside the GDL pores and catalyst layer, resulting in lower output voltage. No liquid water was observed in the anode flow field unless cathode GDLs had a microporous layer (MPL). MPL on the cathode side creates a pressure barrier for water produced at the catalyst layer. Water is pushed across the membrane to the anode side, resulting in anode flow field flooding close to the H2 exit.


2009 ◽  
Vol 60-61 ◽  
pp. 339-342
Author(s):  
Chun Guang Suo ◽  
Xiao Wei Liu ◽  
Xi Lian Wang

Membrane electrode assembly (MEA) is the key component of direct methanol fuel cell (DMFC), the structure and its preparation methods may bring great effects on the cell performances. Due to the requirement of the high performance of the MEA for the micro direct methanol fuel cell (DMFC), we provide a novel double-catalyst layer MEA using CCM-GDE (Catalyst Coated Membrane,CCM;Gas Diffusion Electrode,GDE) fabrication method. The double-catalyst layer is formed with an inner catalyst layer (in anode side: PtRu black as catalyst, in cathode side: Pt black as catalyst) and an outer catalyst layer (in anode side: PtRu/C as catalyst, in cathode side: Pt/C as catalyst). The fabrication procedures are important to the new structured MEA, thus three kinds of fabrication methods are studied, including CCM-GDE, GDE-Membrane and CCM-GDL methods. It was found that the CCM-GDE technology may enhance the contact properties between the catalyst and PEM, and increase the electrode reaction areas, resulted in increasing the performance of the DMFC.


Author(s):  
Casey J. Hoffman ◽  
Daniel F. Walczyk

Two of the largest barriers to PEMFC commercialization are the materials costs for individual components, especially platinum catalyst, and the fact that few large-scale manufacturing capabilities currently exist. This paper focuses on the development of a testbed which will be used for evaluating coating technologies for use in the manufacture of polymer electrolyte membrane (PEM) fuel cell electrodes. More specifically, the focus is on diffusion electrode architecture, in which the catalyst layer is applied to a gas diffusion layer (GDL) rather than on the membrane. These electrodes are used for both low- and high-temperature PEM fuel cells. A flexible web coating testbed has been designed and built to allow for testing of different gas diffusion electrode (GDE) and GDL deposition methods. This testbed, which is approximately two meters in length, includes a variety of both coating and drying capabilities as well as additional space for quality measurement and control system testing. Testbed capabilities and planned experimentation is discussed in detail. In the future, various non-contact deposition methods for the microlayer and catalyst inks will be investigated (e.g., direct spray, ultrasonic spray) to determine those that will provide higher throughput and repeatability through increased process control capability, while improving electrode performance.


Author(s):  
Mehdi Shahraeeni ◽  
Mina Hoorfar

A pore-network model is developed to study numerically the transient flow of fluid through the gas diffusion layer (GDL) of the PEM fuel cell. It is shown that the agglomeration of water droplet on the interface of the GDL and catalyst layer occurs faster for the samples with smaller pore diameters and lower contents of the hydrophobic agent. The study suggests that analysis of the temporal response of the GDL is a useful tool to evaluate its performance against transporting liquids.


Sign in / Sign up

Export Citation Format

Share Document