Development of a PEM Fuel Cell Electrode Coating Testbed

Author(s):  
Casey J. Hoffman ◽  
Daniel F. Walczyk

Two of the largest barriers to PEMFC commercialization are the materials costs for individual components, especially platinum catalyst, and the fact that few large-scale manufacturing capabilities currently exist. This paper focuses on the development of a testbed which will be used for evaluating coating technologies for use in the manufacture of polymer electrolyte membrane (PEM) fuel cell electrodes. More specifically, the focus is on diffusion electrode architecture, in which the catalyst layer is applied to a gas diffusion layer (GDL) rather than on the membrane. These electrodes are used for both low- and high-temperature PEM fuel cells. A flexible web coating testbed has been designed and built to allow for testing of different gas diffusion electrode (GDE) and GDL deposition methods. This testbed, which is approximately two meters in length, includes a variety of both coating and drying capabilities as well as additional space for quality measurement and control system testing. Testbed capabilities and planned experimentation is discussed in detail. In the future, various non-contact deposition methods for the microlayer and catalyst inks will be investigated (e.g., direct spray, ultrasonic spray) to determine those that will provide higher throughput and repeatability through increased process control capability, while improving electrode performance.

2018 ◽  
Vol 13 (1) ◽  
Author(s):  
Venkata Suresh Patnaikuni ◽  
Sreenivas Jayanti

AbstractThe gas diffusion layer (GDL) is one of the key components in a polymer electrolyte membrane (PEM) fuel cell. Generally it is a carbon-based fibrous medium that allows for the transport of electrons through the fibers and distributes the reactants through the void space to the catalyst layer in a PEM fuel cell. In the present work, a microstructure study of reactant transport is carried out by reconstructing the typical fibrous microstructure of the GDL and investigating the transport characteristics of the porous medium using computational fluid dynamics (CFD) simulations. The results confirm the applicability of Darcy’s law formulation for permeability determination and Bruggemann correction for calculation of effective diffusivity for typical conditions encountered in PEM fuel cells. Macroscopic material properties such as through-plane and in-plane permeabilities and effective diffusion coefficient are determined and compared against experimental values reported in the literature.


Author(s):  
Sacheverel Eldrid ◽  
Mehrdad Shahnam ◽  
Michael T. Prinkey ◽  
Zhirui Dong

Polymer Electrolyte Membrane (PEM) fuel cell performance can be optimized and improved by modeling the complex processes that take place in the various components of a fuel cell. Operability over a range of conditions can be assessed using a robust design methodology. Sensitivity analysis can identify critical characteristics in order to guide hardware and softgoods development. A computational model is necessary which captures the critical physical processes taking place within the cell. Such a model must be validated against experimental data before it can be used for product development. A computational model of an experimental PEM fuel cell has been developed. The model is based on the FLUENT CFD solver with the addition of user-defined functions supplied by FLUENT. These functions account for local electrochemical reactions, electrical conduction within diffusion layers and current collectors, mass and heat transfer in the diffusion layers and the flow channels along with binary gas diffusion. The results of this model are compared to experimental data. A PEM fuel cell consists of an ion conducting membrane, anode and cathode catalyst layers, anode and cathode gas diffusion layers, flow channels, and two bipolar plates. Hydrogen and oxygen are supplied to the anode and cathode respectively. As a result of hydrogen oxidation at the anode catalyst layer, hydrogen ions and electrons are produced. The hydrogen ions are conducted through the membrane to the cathode catalyst layer where they combine with oxygen and electrons to produce water and heat. Therefore, a PEM fuel cell model has to take into account: • Fluid flow, heat transfer, and mass transfer in porous anode and cathode diffusion layers; • Electrochemical reactions; • Current transport and potential field in porous anode, cathode, and solid conducting regions. FLUENT Inc. has developed such a model based on their commercially available FLUENT CFD code. This model was exercised on an experimental Plug Power fuel cell. The voltage characteristic of the model was compared to the experimentally measured values. The preliminary comparison between the predicted polarization curve and the experimental results are very favorable.


Author(s):  
Dirk Rensink ◽  
Jo¨rg Roth ◽  
Stephan Fell

In a polymer electrolyte membrane (PEM) fuel cell water is produced by electrochemical reactions in the catalyst layer on the cathode side. The water diffuses through the catalyst layer and a fibrous substrate into gas channels where it is transported away by convection. The fibrous substrate represents the gas diffusion media (GDM). Sometimes the GDM has a thin microporous layer on the side facing the catalyst layer. The same layer structure can be found on the anode side. All layers together are the porous layers of a PEM fuel cell. Under certain operating conditions condensation can occur in the porous layers which might lead to flooding conditions and — if the liquid water forms droplets which grow together in the gas channels — the complete blockage of the channels. Both situations can lead to a local starvation of reactant gases with negative impact on fuel cell performance and durability. The void space of the hydrophobic fibrous substrate in a PEM fuel cell can be interpreted as micro channels in a broader sense, especially if liquid phase transport from the catalyst layer towards the gas channels is in focus. Due to the small dimensions with effective channel diameter in the range of micrometer the flow of liquid water is governed by capillary forces. The same applies for the gas channels at low gas velocities since the Bond and Capillary numbers are well below one. Thus the investigation of liquid water flow and distribution under low gas velocities in the hydrophobic fibrous substrate and the spreading of liquid water along the hydrophilic gas channel walls under capillary action is of special interest for PEM fuel cells and investigated here.


Author(s):  
Terry B. Caston ◽  
Kanthi L. Bhamidipati ◽  
Haley Carney ◽  
Tequila A. L. Harris

The goal of this study is to design a gas diffusion layer (GDL) for a polymer electrolyte membrane (PEM) fuel cell with a graduated permeability, and therefore a graduated resistance to flow throughout the GDL. It has been shown that using conventional materials the GDL exhibits a higher resistance in the through-plane direction due to the orientation of the small carbon fibers that make up the carbon paper or carbon cloth. In this study, a GDL is designed for an unconventional PEM fuel cell stack, where the reactant gases are supplied through the side of the GDL rather than through flow field channels, which are machined into a bipolar plate. The effects of changing in-plane permeability, through-plane permeability, and thickness of the GDL on the expected current density distribution at the catalyst layer are studied. Three different thicknesses are investigated, and it is found that as GDL thickness increases, more uniform reactant distribution over the face of the GDL is obtained. Results also show that it is necessary to design a GDL with a much higher in-plane resistance than through-plane resistance for the unconventional PEM stack studied.


2021 ◽  
Vol 9 ◽  
Author(s):  
Andrei Kulikovsky

Impedance of all oxygen transport processes in PEM fuel cell has negative real part in some frequency domain. A kernel for calculation of distribution of relaxation times (DRT) of a PEM fuel cell is suggested. The kernel is designed for capturing impedance with negative real part and it stems from the equation for impedance of oxygen transport through the gas-diffusion transport layer (doi:10.1149/2.0911509jes). Using recent analytical solution for the cell impedance, it is shown that DRT calculated with the novel K2 kernel correctly captures the GDL transport peak, whereas the classic DRT based on the RC-circuit (Debye) kernel misses this peak. Using K2 kernel, analysis of DRT spectra of a real PEMFC is performed. The leftmost on the frequency scale DRT peak represents oxygen transport in the channel, and the rightmost peak is due to proton transport in the cathode catalyst layer. The second, third, and fourth peaks exhibit oxygen transport in the GDL, faradaic reactions on the cathode side, and oxygen transport in the catalyst layer, respectively.


Author(s):  
Dario Maggiolo ◽  
Andrea Marion ◽  
Massimo Guarnieri

Several experiments have proved that water in liquid phase can be present at the anode of a PEM fuel cell due to vapor condensation resulting in mass transport losses. Nevertheless, it is not yet well understood where exactly water tends to cumulate and how the design of the gas channel (GC) and gas diffusion layer (GDL) could be improved to limit water cumulation. In the present work a three-dimensional lattice Boltzmann based model is implemented in order to simulate the water cumulation at the GC-GDL interface at the anode of a PEM fuel cell. The numerical model incorporates the H2-H2O mixture equation of state and spontaneously simulates phase separation phenomena. Different simulations are carried out varying pressure gradient, pore size and relative height of the GDL. Results reveal that, once saturation conditions are reached, water tends to cumulate in two main regions: the upper and side walls of the GC and the GC-GDL interface, resulting in a limitation of the reactant diffusion from the GC to the GDL. Interestingly, the cumulation of liquid water at the interface is found to diminish as the relative height of the GDL increases.


Author(s):  
Cody D. Rath ◽  
Satish G. Kandlikar

Water management issues continue to be a major concern for the performance of polymer electrolyte membrane (PEM) fuel cells. Maintaining the optimal amount of hydration can ensure that the cell is operating properly and with high efficiency. There are several components that can affect water management, however one area that has received increased attention is the interface between the gas diffusion layer (GDL) and the gas reactant channels where excess water has a tendency to build up and block reactant gasses. One key parameter that can affect this build up is the geometry of the microchannels. The work presented here proposes an optimal trapezoidal geometry which will aid in the removal of excess water in the gas channels. The Concus-Finn condition is applied to the channel surfaces and GDL to ensure the water will be drawn away from GDL surface and wicked to the top corner of the channel. An ex situ setup is designed to establish the validity of the Concus-Finn application. Once validated, this condition is then used to design optimal channel geometries for water removal in a PEM fuel cell gas channel.


2022 ◽  
Vol 960 (1) ◽  
pp. 012002
Author(s):  
I G Bratu ◽  
R F Ene ◽  
M Vulpe ◽  
F Uleanu ◽  
D Giosanu

Abstract The performance of PEM fuel cells is influenced by several factors such as: the operating temperature of the cell, the reactant gas flow, work pressures, the reaction gas humidity. In the present work we aimed to identify the optimal values of these parameters for operation of a PEM cell to achieve maximum power in conditions of high efficiency; the technological possibilities of its use in a portable energy application have been evaluated. Experimental measurements regarding the integrating polymeric membrane in three different fuel cell construction designed were performed. The influence of the mechanical compression of the GDL diffusion layer on the total internal resistance of the cell was achieved by comparative analysis of the polarization curves. It was found that as the deformation level of the MEA increases, the power generated by the battery increases progressively. The resulting experimental data subsequently allowed the design and implementation of a PEM fuel cell assembly, fully functional at power level, corresponding to the number of constituent elements.


Sign in / Sign up

Export Citation Format

Share Document