scholarly journals Power Grid Frequency Regulation Strategy for Photovoltaic Plant Based on Multi-Objective Harris Hawks Optimization

2021 ◽  
Vol 9 ◽  
Author(s):  
Long Wang ◽  
Xucheng Chang ◽  
Xiang Li ◽  
Wenli Huang ◽  
Yingying Jiao

To settle the issue of balance between two objectives, i.e., photovoltaic (PV) power station output power maximization and frequency regulation (FR) signals response, a novel PV reconfiguration strategy is proposed in this work, which maximizes the output power through PV reconfiguration, and meanwhile utilizes the energy storage system (ESS) to decrease the PV plant generated power’ deviation from FR signals. Above all, a model of PV-storage power station reconfiguration is designed to minimize the power bias of both rated power and FR signals. Then, the multi-objective Harris hawks optimization (MHHO) is used to obtain the Pareto front which can optimize the above two objectives due to its high optimization efficiency and speed. Subsequently, the optimal compromise solution is selected by the decision-making method of VIseKriterijumska Optimizacija I Kompromisno Resenje (VIKOR). Aiming to substantiate the efficacy of the proposed technique, the case studies are carried out under partial shading condition (PSC) with constant and time-varying FR signals. The simulation results show that, compared with the situation without optimization, the power deviations of the two objectives are reduced by 25.11 and 75.76% under constant FR signals and 23.27 and 55.81% under time-varying FR signals by proposed method, respectively.

2021 ◽  
Vol 9 ◽  
Author(s):  
Tingyi He ◽  
Shengnan Li ◽  
Yiping Chen ◽  
Shuijun Wu ◽  
Chuangzhi Li

This paper establishes a novel optimal array reconfiguration (OAR) of a PV power plant for secondary frequency control of automatic generation control (AGC). Compared with the existing studies, the proposed OAR can further take the AGC signal responding into account except the maximum power output, in which the battery energy storage system is used to balance the power deviation between the AGC signals and the PV power outputs. Based on these two conflicted objects, the OAR is formulated as a bi-objective optimization. To address this problem, the efficient non-dominated sorting genetic algorithm II (NSGA-II) is designed to rapidly obtain an optimal Pareto front due to its high optimization efficiency. The decision-making method called VIKOR is employed to determine the best compromise solution from the obtained Pareto front. To verify the effectiveness of the proposed bi-objective optimization of OAR, three case studies with fixed, step-increasing, and step-decreasing AGC signals are carried out on a 10 × 10 total-cross-tied PV arrays under partial shading conditions.


Electronics ◽  
2021 ◽  
Vol 10 (15) ◽  
pp. 1801
Author(s):  
Chenyun Pan ◽  
Shengyu Tao ◽  
Hongtao Fan ◽  
Mengyao Shu ◽  
Yong Zhang ◽  
...  

Optimal operation of energy storage systems plays an important role in enhancing their lifetime and efficiency. This paper combines the concepts of the cyber–physical system (CPS) and multi-objective optimization into the control structure of the hybrid energy storage system (HESS). Owing to the time-varying characteristics of HESS, combining real-time data with physical models via CPS can significantly promote the performance of HESS. The multi-objective optimization model designed in this paper can improve the utilization of supercapacitors, reduce energy consumption, and prevent the state of charge (SOC) of HESS from exceeding the limitation. The new control scheme takes the characteristics of the components of HESS into account and is beneficial in reducing battery short-term power cycling and high discharge currents. The rain-flow counting algorithm is applied for battery life prediction to quantify the benefits of the HESS under the control scheme proposed. A much better power-sharing relationship between the supercapacitor and the lithium–ion battery (LiB) can be observed from the SIMULINK results and the case study with our new control scheme. Moreover, compared to the traditional low-pass filter control method, the battery lifetime is quantifiably increased from 3.51 years to 10.20 years while the energy efficiency is improved by 1.56%.


2021 ◽  
Vol 13 (7) ◽  
pp. 3765
Author(s):  
Benxi Hu ◽  
Fei Tang ◽  
Dichen Liu ◽  
Yu Li ◽  
Xiaoqing Wei

The doubly-fed induction generator (DFIG) uses the rotor’s kinetic energy to provide inertial response for the power system. On this basis, this paper proposes an improved torque limit control (ITLC) strategy for the purpose of exploiting the potential of DFIGs’ inertial response. It includes the deceleration phase and acceleration phase. To shorten the recovery time of the rotor speed and avoid the second frequency drop (SFD), a small-scale battery energy storage system (BESS) is utilized by the wind-storage combined control strategy. During the acceleration phase of DFIG, the BESS adaptively adjusts its output according to its state of charge (SOC) and the real-time output of the DFIG. The simulation results prove that the system frequency response can be significantly improved through ITLC and the wind-storage combined control under different wind speeds and different wind power penetration rates.


Sign in / Sign up

Export Citation Format

Share Document