scholarly journals Textile Industry Wastewaters From Jetpur, Gujarat, India, Are Dominated by Shewanellaceae, Bacteroidaceae, and Pseudomonadaceae Harboring Genes Encoding Catalytic Enzymes for Textile Dye Degradation

2021 ◽  
Vol 9 ◽  
Author(s):  
Dinesh Kumar ◽  
Zarna Patel ◽  
Priti Pandit ◽  
Ramesh Pandit ◽  
Amrutlal Patel ◽  
...  

Textile industries play an important role in uplifting the national economies worldwide. Nevertheless, they generate a huge amount of intensive colored effluent, which is a serious threat to the environment. The microbial communities present in these highly polluted environmental sites help in remediating pollutants naturally. However, little is known about their genes and enzymes in the textile wastewater systems. In this study, we explored the microbial community structure and their functional capability in three different wastewater systems, i.e., industry sites, effluent treatment plant (ETP), and common effluent treatment plant (CETP). Our findings based on shotgun metagenomics highlight the varied bacterial diversity at the three industry sites. Overall, the major dominant phyla in the industry site and CETP samples were Proteobacteria and Bacteroidetes, while in the ETP site, Firmicutes, Cyanobacteria, and Proteobacteria were predominant. The final discharge sample site was having a higher proportion of the Proteobacteria and Bacteroidetes. Aeromonas caviae, Desulfovibrio desulfuricans, Klebsiella pneumoniae, Pseudomonas stutzeri, Shewanella decolorationis, Shewanella oneidensis, Shewanella putrefaciens, and Vibrio cholera were the abundant species across the three sites. Furthermore, this research study identified the key microbial genes encoding enzymes having a known role in textile dye and aromatic compound degradation. Functional annotation of the shotgun metagenome samples indicates the presence of reductase, azoreductase, nitrate/nitrite reductase, and oxidoreductase enzyme encoding genes. Our findings provide the shotgun metagenomics-based approach for mining the textile dye degrading genes and genomic insights into the bioremediation of textile industrial effluent.

2016 ◽  
Vol 30 (1-2) ◽  
pp. 39-42
Author(s):  
MM Hassan ◽  
MZ Alam ◽  
MN Anwar

Effluents from textile dyeing industry are so toxic that it threatens the environment in various ways. Hence, it should be treated before discharge. Biotreatment is the most promising approach for the remediation of toxic industrial effluent where microorganisms breakdown the dye molecule into its nontoxic basic elements. In effluent treatment plants (ETP), protozoa accelerate dye degradation process by stimulating the growth of acting bacteria and also play a key role in clarification of the secondary effluent through engulfment of excess bacteria. However, only a few types of protozoa can survive and thrive on this toxic environment. This study deals with the identification and survey of the protozoa present in the effluent treatment plant of a dyeing industry. Collected samples were stained with Leishman reagent and observed under microscope. A total of 10 protozoa were observed and 6 of them were identified up to genus viz. Paramecium, Nassula, Opercularium, Stylonychia, Telotrochidium, Trachelomonas on the basis of their morphological and structural arrangements observed under microscope. Hence, this study reveals that some protozoa can thrive in toxic dyeing effluent and play an important role in maintaining the sustainability of an effluent treatment plant (ETP).Bangladesh J Microbiol, Volume 30, Number 1-2,June-Dec 2013, pp 39-42


1992 ◽  
Vol 25 (1) ◽  
pp. 45-51 ◽  
Author(s):  
Larbi Tebai ◽  
Ioannis Hadjivassilis

Soft drinks industry wastewater from various production lines is discharged into the Industrial Effluent Treatment Plant. The traditional coagulation/flocculation method as first step, followed by biological treatment as second step, has been adopted for treating the soft drinks industry wastewaters. The performance of the plant has been evaluated. It has been found that the effluent characteristics are in most cases in correspondence with the requested standards for discharging the effluent into the Nicosia central sewerage system.


Author(s):  
Komal Pandey ◽  
Priyanka Gupta ◽  
Nishith Verma ◽  
Shiv Singh

Microbial fuel cells (MFCs) are considered to be an efficient green technology for treating wastewater effluents. Integration of MFC with an effluent treatment plant can reduce the operational cost, as...


1997 ◽  
Vol 36 (2-3) ◽  
pp. 329-335 ◽  
Author(s):  
Ioannis Hadjivassilis ◽  
Stanislav Gajdos ◽  
Dusan Vanco ◽  
Michael Nicolaou

A small industrial effluent treatment plant has been designed and installed for the treatment of wastewater from a potato chips and snacks factory. The total daily flow rate to the plant was 115 m3/d, while the influent COD mass flux was 838.7 kg/d and the BOD mass flux was 626.7 kg/d. The applied method of treatment is a simple upflow anaerobic reactor with internal settling and gas collection units, followed by aerobic treatment based on the activated sludge process with diffused air system. The quality of the treated water is better than requested and the overall treatment process efficiencies are 99.2% for COD removal and 99.5% for BOD5 removal. The results of the operation of the plant during the first five months are examined and described in this paper.


Author(s):  
Shipra Jha ◽  
S. N. Dikshit

Heavy metal pollution in wastewater has always been a serious environmental problem because heavy metals are not biodegradable and can be accumulated in living tissues. Copper is widely used in various important industrial applications. The increasing level of heavy metals in the aquatic system due to incomplete treatment of industrial wastewater by existing conventional methods is of environmental concern. Therefore, there has been an increasing interest in the possibility of using biological treatments. It is important to evaluate the performance of biomass with actual industrial effluent to ensure its field applicability. Hence the experiments were conducted with actual industrial effluents collected from Effluent Treatment Plant (ETP) and tannery industry.


2017 ◽  
Vol 78 (1) ◽  
pp. 132-146 ◽  
Author(s):  
Gargi Biswas ◽  
Philips Prince Pokkatt ◽  
Aratrika Ghosh ◽  
Biswajit Kamila ◽  
Kalyan Adhikari ◽  
...  

Abstract Fluoride contamination in groundwater is now becoming a global concern. In the present study, removal of fluoride using dry biomass (DBM) of a micro-algal consortium of Chlorococcum infusionum and Leptolyngbya foveolaurum, collected from a coke-oven effluent treatment plant, Durgapur, India, has been investigated. The large volume of algal bloom in the industrial effluent has created serious disposal issues and caused severe environmental concerns. A biosorption technique has been carried out to valorize the waste algae biomass into a potential adsorbent. Response Surface Methodology (RSM) is used to model and optimize fluoride removal. Maximum fluoride removal (72%) is obtained at pH 4, 5 mg/L initial fluoride concentration, 0.5 g/L adsorbent dose (AD), and 25 °C temperature during one-factor-at-a-time (OFAT) analysis. The optimum condition of removal as specified by RSM is – initial concentration of fluoride: 30 mg/L, pH: 4.5, AD: 3.5 g/L and temperature: 30 °C. FESEM-EDX, FTIR and BET isotherm studies are done to characterize raw and fluoride treated biomass. Lagergren first order kinetic model and Freundlich isotherm model, are found to analyze best kinetic and equilibrium data, respectively. Adsorption capacity of DBM has been found to be 34.36 mg/g. The kinetics of fluoride removal have been well described by COMSOL Multiphysics.


Sign in / Sign up

Export Citation Format

Share Document