scholarly journals Modern Pollen–Plant Diversity Relationships Inform Palaeoecological Reconstructions of Functional and Phylogenetic Diversity in Calcareous Fens

2020 ◽  
Vol 8 ◽  
Author(s):  
Ansis Blaus ◽  
Triin Reitalu ◽  
Pille Gerhold ◽  
Inga Hiiesalu ◽  
Jhonny Capichoni Massante ◽  
...  
2020 ◽  
Vol 117 (9) ◽  
pp. 4464-4470 ◽  
Author(s):  
Susan Harrison ◽  
Marko J. Spasojevic ◽  
Daijiang Li

Climate strongly shapes plant diversity over large spatial scales, with relatively warm and wet (benign, productive) regions supporting greater numbers of species. Unresolved aspects of this relationship include what causes it, whether it permeates to community diversity at smaller spatial scales, whether it is accompanied by patterns in functional and phylogenetic diversity as some hypotheses predict, and whether it is paralleled by climate-driven changes in diversity over time. Here, studies of Californian plants are reviewed and new analyses are conducted to synthesize climate–diversity relationships in space and time. Across spatial scales and organizational levels, plant diversity is maximized in more productive (wetter) climates, and these consistent spatial relationships are mirrored in losses of taxonomic, functional, and phylogenetic diversity over time during a recent climatic drying trend. These results support the tolerance and climatic niche conservatism hypotheses for climate–diversity relationships, and suggest there is some predictability to future changes in diversity in water-limited climates.


2021 ◽  
Vol 118 (5) ◽  
pp. e2015421118
Author(s):  
Peter W. Guiden ◽  
Nicholas A. Barber ◽  
Ryan Blackburn ◽  
Anna Farrell ◽  
Jessica Fliginger ◽  
...  

A primary goal of ecological restoration is to increase biodiversity in degraded ecosystems. However, the success of restoration ecology is often assessed by measuring the response of a single functional group or trophic level to restoration, without considering how restoration affects multitrophic interactions that shape biodiversity. An ecosystem-wide approach to restoration is therefore necessary to understand whether animal responses to restoration, such as changes in biodiversity, are facilitated by changes in plant communities (plant-driven effects) or disturbance and succession resulting from restoration activities (management-driven effects). Furthermore, most restoration ecology studies focus on how restoration alters taxonomic diversity, while less attention is paid to the response of functional and phylogenetic diversity in restored ecosystems. Here, we compared the strength of plant-driven and management-driven effects of restoration on four animal communities (ground beetles, dung beetles, snakes, and small mammals) in a chronosequence of restored tallgrass prairie, where sites varied in management history (prescribed fire and bison reintroduction). Our analyses indicate that management-driven effects on animal communities were six-times stronger than effects mediated through changes in plant biodiversity. Additionally, we demonstrate that restoration can simultaneously have positive and negative effects on biodiversity through different pathways, which may help reconcile variation in restoration outcomes. Furthermore, animal taxonomic and phylogenetic diversity responded differently to restoration, suggesting that restoration plans might benefit from considering multiple dimensions of animal biodiversity. We conclude that metrics of plant diversity alone may not be adequate to assess the success of restoration in reassembling functional ecosystems.


2014 ◽  
Vol 30 (4) ◽  
pp. 323-333 ◽  
Author(s):  
Miguel A. Munguía-Rosas ◽  
Selmy G. Jurado-Dzib ◽  
Candy R. Mezeta-Cob ◽  
Salvador Montiel ◽  
Armando Rojas ◽  
...  

Abstract:Several studies have evaluated the short-term effects of tropical forest fragmentation on plant taxonomic diversity, while only a few have evaluated its effects on functional or phylogenetic diversity. To our knowledge no study has looked at the long-term consequences of tropical forest fragmentation on the three main components of plant diversity simultaneously: taxonomic, functional and phylogenetic diversity. We sampled the vascular flora using belt transects (50 × 4 m) in a continuous tropical semi-evergreen forest (16 transects) and in an adjacent naturally fragmented forest (fragments of 1.7-My-old semi-evergreen forest immersed in a mangrove/sedge matrix) (18 transects), and compared their taxonomic, functional and phylogenetic plant diversity. There were 36 species in the continuous forest and 28 in the fragmented forest. Continuous forest was taxonomically more diverse (25%) than the fragmented forest. All functional diversity metrics were greater (6–33%) in the continuous than in the fragmented forest. Phylogenetic diversity was 19% greater and phylogenetically more overdispersed in the continuous forest than in the fragmented forest. The results suggest that in the fragmented forest not only is taxonomic plant diversity lower, but functional and phylogenetic diversity are as well. The negative effects of forest fragmentation on plant diversity seem to be chronic.


2021 ◽  
Author(s):  
Virginie Marques ◽  
Paul Castagné ◽  
Andréa Polanco Fernández ◽  
Giomar Helena Borrero‐Pérez ◽  
Régis Hocdé ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document