scholarly journals Climate and plant community diversity in space and time

2020 ◽  
Vol 117 (9) ◽  
pp. 4464-4470 ◽  
Author(s):  
Susan Harrison ◽  
Marko J. Spasojevic ◽  
Daijiang Li

Climate strongly shapes plant diversity over large spatial scales, with relatively warm and wet (benign, productive) regions supporting greater numbers of species. Unresolved aspects of this relationship include what causes it, whether it permeates to community diversity at smaller spatial scales, whether it is accompanied by patterns in functional and phylogenetic diversity as some hypotheses predict, and whether it is paralleled by climate-driven changes in diversity over time. Here, studies of Californian plants are reviewed and new analyses are conducted to synthesize climate–diversity relationships in space and time. Across spatial scales and organizational levels, plant diversity is maximized in more productive (wetter) climates, and these consistent spatial relationships are mirrored in losses of taxonomic, functional, and phylogenetic diversity over time during a recent climatic drying trend. These results support the tolerance and climatic niche conservatism hypotheses for climate–diversity relationships, and suggest there is some predictability to future changes in diversity in water-limited climates.

2020 ◽  
Vol 375 (1794) ◽  
pp. 20190106 ◽  
Author(s):  
Susan Harrison

Regions and localities may lose many species to extinction under rapid climate change and may gain other species that colonize from nearby warmer environments. Here, it is argued that warming-induced species losses will generally exceed gains and there will be more net declines than net increases in plant community richness. Declines in richness are especially likely in water-limited climates where intensifying aridity will increasingly exceed plant tolerances, but also in colder temperature-limited climates where steep climatic gradients are lacking, and therefore, large pools of appropriate species are not immediately adjacent. The selectivity of warming-induced losses may lead to declines in functional and phylogenetic diversity as well as in species richness, especially in water-limited climates. Our current understanding of climate-caused diversity trends may be overly influenced by numerous studies coming from north-temperate alpine mountaintops, where conditions are unusually favourable for increases—possibly temporary—in local species richness. This article is part of the theme issue ‘Climate change and ecosystems: threats, opportunities and solutions’.


Diversity ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 234 ◽  
Author(s):  
Eric A. Griffin ◽  
Joshua G. Harrison ◽  
Melissa K. McCormick ◽  
Karin T. Burghardt ◽  
John D. Parker

Although decades of research have typically demonstrated a positive correlation between biodiversity of primary producers and associated trophic levels, the ecological drivers of this association are poorly understood. Recent evidence suggests that the plant microbiome, or the fungi and bacteria found on and inside plant hosts, may be cryptic yet important drivers of important processes, including primary production and trophic interactions. Here, using high-throughput sequencing, we characterized foliar fungal community diversity, composition, and function from 15 broadleaved tree species (N = 545) in a recently established, large-scale temperate tree diversity experiment using over 17,000 seedlings. Specifically, we tested whether increases in tree richness and phylogenetic diversity would increase fungal endophyte diversity (the “Diversity Begets Diversity” hypothesis), as well as alter community composition (the “Tree Diversity–Endophyte Community” hypothesis) and function (the “Tree Diversity–Endophyte Function” hypothesis) at different spatial scales. We demonstrated that increasing tree richness and phylogenetic diversity decreased fungal species and functional guild richness and diversity, including pathogens, saprotrophs, and parasites, within the first three years of a forest diversity experiment. These patterns were consistent at the neighborhood and tree plot scale. Our results suggest that fungal endophytes, unlike other trophic levels (e.g., herbivores as well as epiphytic bacteria), respond negatively to increasing plant diversity.


2021 ◽  
Vol 118 (5) ◽  
pp. e2015421118
Author(s):  
Peter W. Guiden ◽  
Nicholas A. Barber ◽  
Ryan Blackburn ◽  
Anna Farrell ◽  
Jessica Fliginger ◽  
...  

A primary goal of ecological restoration is to increase biodiversity in degraded ecosystems. However, the success of restoration ecology is often assessed by measuring the response of a single functional group or trophic level to restoration, without considering how restoration affects multitrophic interactions that shape biodiversity. An ecosystem-wide approach to restoration is therefore necessary to understand whether animal responses to restoration, such as changes in biodiversity, are facilitated by changes in plant communities (plant-driven effects) or disturbance and succession resulting from restoration activities (management-driven effects). Furthermore, most restoration ecology studies focus on how restoration alters taxonomic diversity, while less attention is paid to the response of functional and phylogenetic diversity in restored ecosystems. Here, we compared the strength of plant-driven and management-driven effects of restoration on four animal communities (ground beetles, dung beetles, snakes, and small mammals) in a chronosequence of restored tallgrass prairie, where sites varied in management history (prescribed fire and bison reintroduction). Our analyses indicate that management-driven effects on animal communities were six-times stronger than effects mediated through changes in plant biodiversity. Additionally, we demonstrate that restoration can simultaneously have positive and negative effects on biodiversity through different pathways, which may help reconcile variation in restoration outcomes. Furthermore, animal taxonomic and phylogenetic diversity responded differently to restoration, suggesting that restoration plans might benefit from considering multiple dimensions of animal biodiversity. We conclude that metrics of plant diversity alone may not be adequate to assess the success of restoration in reassembling functional ecosystems.


2014 ◽  
Vol 30 (4) ◽  
pp. 323-333 ◽  
Author(s):  
Miguel A. Munguía-Rosas ◽  
Selmy G. Jurado-Dzib ◽  
Candy R. Mezeta-Cob ◽  
Salvador Montiel ◽  
Armando Rojas ◽  
...  

Abstract:Several studies have evaluated the short-term effects of tropical forest fragmentation on plant taxonomic diversity, while only a few have evaluated its effects on functional or phylogenetic diversity. To our knowledge no study has looked at the long-term consequences of tropical forest fragmentation on the three main components of plant diversity simultaneously: taxonomic, functional and phylogenetic diversity. We sampled the vascular flora using belt transects (50 × 4 m) in a continuous tropical semi-evergreen forest (16 transects) and in an adjacent naturally fragmented forest (fragments of 1.7-My-old semi-evergreen forest immersed in a mangrove/sedge matrix) (18 transects), and compared their taxonomic, functional and phylogenetic plant diversity. There were 36 species in the continuous forest and 28 in the fragmented forest. Continuous forest was taxonomically more diverse (25%) than the fragmented forest. All functional diversity metrics were greater (6–33%) in the continuous than in the fragmented forest. Phylogenetic diversity was 19% greater and phylogenetically more overdispersed in the continuous forest than in the fragmented forest. The results suggest that in the fragmented forest not only is taxonomic plant diversity lower, but functional and phylogenetic diversity are as well. The negative effects of forest fragmentation on plant diversity seem to be chronic.


2020 ◽  
Author(s):  
Jason Cohen

<p>Since 2000 there have been two significant changes impacting loadings of aerosols and trace gasses on the troposphere. First, there has been a rapid expansion of urbanization and access to energy sources, coupled with significant deforestation, all leading to a rapid increase in emissions and a change in its distribution in space and time. Secondly, we now have access to multiple daily to weekly measurements of aerosols and related trace gasses on a global scale. Combining the data from these different remotely sensed platforms in space and on the ground, coupled with an understanding of the basic physical and chemical differences of different sources and substances should allow us to understand and begin to quantify how the emissions have changed over time. However, we have serious issues when it comes to analyzing changes which are rapid in either space or time, with traditional Kalman filters and 3D/4D variance techniques tending to smooth out such changes.</p><p>The approach uses the rate in the change of the difference of the variance  of the loadings of NO<sub>2</sub> (from OMI) which is short-lived, CO (from MOPITT) which is long-lived, and AOD (from MISR) which is short-lived in the presence of rain, and intermediate-lived under dry conditions. This combination is used to generate new a priori, which in turn have a significantly different spatial, temporal resolution than currently existing emission datasets. The magnitudes are then scaled by using a simple forward-inverse modeling framework based on an approximation of an EnKF approach, using measurements not used in the a priori fitting: AOD from AERONET and MODIS, surface measurements of trace gasses from various national and international projects, and other sources.</p><p>Our results of this new approach demonstrate that these rapidly varying sources in space and time can contribute from an additional 10% to up to 500% of emissions over these various rapidly changing regions, as compared with existing present-day inventories. The results seem to be robust for changes occurring over time scales from a week to two months, and spatial scales of 25km x 25km and larger. The technique is able to capture significant single events, inter-annual and intra-annual variation. In specific, we observe clear decreases in sources from urban North America and urban Western Europe, both increases and decreases over East Asia, and significant increase in biomass burning sources from North America, and both biomass burning and urban sources from Southeast Asia, Africa, and regions of South America.</p><p>Finally, weaknesses in the model assumptions associated with vertical transport, mis-characterized removal and in-situ processing, remotely sensed measurement biases (i.e. cloud cover), and the mathematics of sampling of the differences of the variance are discussed. In some cases, uncertainties in emissions can be expanded to cover these observations, and in other cases are highlighted for future work.</p>


2020 ◽  
Author(s):  
Jennifer Butt

Bioenergy production may reduce the emission of CO2 which contributes to climate change, particularly when management strategies are adopted that promote soil carbon (C) sequestration in bioenergy cropping systems. Planting perennial native grasses, such as switchgrass (Panicum virgatum L.) and big bluestem (Andropogon gerardii Vitman) may be used as a strategy to enhance soil C accumulation owing to their extensive root systems. Fertilizer use may further promote soil C sequestration, because of its positive impacts on plant production and soil C input. However, the influence of fertilizer addition on soil C accumulation is variable across bioenergy cropping systems, and fertilizer can negatively impact the environment. Increasing plant diversity may be used as a strategy to enhance soil C accumulation while augmenting other ecosystem properties such as soil biodiversity. The present study evaluates how inter- and intra- specific plant community diversity and N addition influence soil C storage and soil biodiversity. Soil was collected from a long-term (9 growing seasons) field experiment located at the Fermilab National Environmental Research Park in Illinois, USA. Treatments included [1] three cultivars of big bluestem and three cultivars of switchgrass cultivars grown in monoculture, [2] plant community diversity manipulated at both the species- and cultivar level, and [3] nitrogen (N) applied annually at two levels (0 and 67 kg ha-1). The soil at the site was dominated by C3 grasses for 30 years before replacement with C4 bioenergy grasses, which enabled quantification of plant-derived C accumulation owing to the natural difference in isotopic signature between C3 and C4 grasses. Soil samples were analyzed for [1] soil C and its δ13C isotopic signature, and [2] nematode and soil bacterial diversity. Our results indicate that both plant diversity and N addition influence soil community structure but not soil C storage or soil nematode biodiversity. However, the addition of big bluestem to the plant species mixes enhanced plant-derived C storage. In summary, our findings suggest that plant species identity can control soil C accumulation in the years following land conversion, and that manipulating plant community structure in bioenergy cropping systems may have a greater positive impact on soil C accumulation than N fertilization.


Author(s):  
Costanza Geppert ◽  
Greta La Bella ◽  
Francesco Boscutti ◽  
Francesco Sanna ◽  
Federico Marangoni ◽  
...  

Abstract In mountains, current land-use changes are altering plant communities of semi-natural grasslands with potential cascading effects on associated herbivores. Besides vegetation changes, temperature is also a key driver of insect diversity, and in the European Alps is predicted to increase by 0.25 °C per decade. Understanding herbivore responses to temperature and plant composition changes in mountain environments is of increasing importance. Our study aims at investigating the response to temperature and plant diversity and composition of two key herbivore groups (orthopterans and leafhoppers) belonging to contrasting feeding guilds (chewers vs. sap-feeders). We hypothesized that orthopteran diversity would be driven by temperature while leafhoppers by plant community composition. We selected 15 dry calcareous grasslands ranging from 100 to 1330 m a.s.l. along two independent gradients of plant diversity and temperature. We sampled orthopteran and leafhopper species richness and abundance by sweep-netting. Consistent with their low feeding specialisation, orthopteran species richness and community composition were only driven by temperature. By contrast, leafhopper species richness was not affected by temperature nor by plant diversity but leafhopper community composition was strongly influenced by plant species composition. This response can be explained by the higher host feeding specialisation of many leafhopper species. Species rarity and mobility did not change the response of the diversity of both groups, but orthopteran abundance increased with temperature only for highly mobile species. Altogether, our results suggest that future responses of grassland herbivores to vegetation changes and temperature warming are highly variable and depend on the feeding strategy and specialisation of the focal herbivore group. Implications for insect conservation Leafhoppers emerged to be particularly sensitive to potential management or climate-induced change in vegetation composition, while orthopterans are expected to respond directly to temperature warming due to their relaxed association with plant community diversity and composition.


Sign in / Sign up

Export Citation Format

Share Document