scholarly journals Habitat Complexity Affects the Structure but Not the Diversity of Sessile Communities on Tropical Coastal Infrastructure

2021 ◽  
Vol 9 ◽  
Author(s):  
Su Yin Chee ◽  
Jean Chai Yee ◽  
Chee Ban Cheah ◽  
Ally Jane Evans ◽  
Louise B. Firth ◽  
...  

Increasing human population, urbanisation, and climate change have resulted in the proliferation of hard coastal infrastructure such as seawalls and breakwaters. There is increasing impetus to create multifunctional coastal defence structures with the primary function of protecting people and property in addition to providing habitat for marine organisms through eco-engineering - a nature-based solutions approach. In this study, the independent and synergistic effects of physical complexity and seeding with native oysters in promoting diversity and abundances of sessile organisms were assessed at two locations on Penang Island, Malaysia. Concrete tiles with varying physical and biological complexity (flat, 2.5 cm ridges and crevices, and 5 cm ridges and crevices that were seeded or unseeded with oysters) were deployed and monitored over 12 months. The survival of the seeded oysters was not correlated with physical complexity. The addition of physical and biological complexity interacted to promote distinct community assemblages, but did not consistently increase the richness, diversity, or abundances of sessile organisms through time. These results indicate that complexity, whether physical or biological, is only one of many influences on biodiversity on coastal infrastructure. Eco-engineering interventions that have been reported to be effective in other regions may not work as effectively in others due to the highly dynamic conditions in coastal environment. Thus, it is important that other factors such as the local species pools, environmental setting (e.g., wave action), biological factors (e.g., predators), and anthropogenic stressors (e.g., pollution) should also be considered when designing habitat enhancements. Such factors acting individually or synergistically could potentially affect the outcomes of any planned eco-engineering interventions.

2000 ◽  
Vol 3 (3) ◽  
pp. 198-206 ◽  
Author(s):  
Fox ◽  
McGrady-Steed ◽  
Petchey

2016 ◽  
Author(s):  
Dave W Armitage

Biodiversity-ecosystem function (BEF) experiments often employ common garden designs, drawing samples from a local biota. However, the communities from which taxa are sampled may not be at equilibrium. I assembled pools of aquatic bacterial strains isolated at different time points from leaves on the pitcher plant Darlingtonia californica to evaluate the role of a dynamic, host-associated microbiota on the BEF relationship. I constructed experimental communities using bacteria from each time point and measured their respiration rates. Communities assembled from mid-successional species pools showed the strongest positive relationships between community richness and respiration rates, driven primarily by linear additivity among isolates. Diffuse competition was common among all communities but greatest within mid-successional isolates. These results demonstrate the dependence of the BEF relationship on the temporal dynamics of the local species pool, implying that ecosystems may respond differently to the addition or removal of taxa at different points in time during succession.


2021 ◽  
Vol 9 ◽  
Author(s):  
Kathryn A. O’Shaughnessy ◽  
Shimrit Perkol-Finkel ◽  
Elisabeth M. A. Strain ◽  
Melanie J. Bishop ◽  
Stephen J. Hawkins ◽  
...  

In response to the environmental damage caused by urbanization, Nature-based Solutions (NbS) are being implemented to enhance biodiversity and ecosystem processes with mutual benefits for society and nature. Although the field of NbS is flourishing, experiments in different geographic locations and environmental contexts have produced variable results, with knowledge particularly lacking for the subtidal zone. This study tested the effects of physical complexity on colonizing communities in subtidal habitats in two urban locations: (1) Plymouth, United Kingdom (northeast Atlantic) and (2) Tel Aviv, Israel (eastern Mediterranean) for 15- and 12-months, respectively. At each location, physical complexity was manipulated using experimental tiles that were either flat or had 2.5 or 5.0 cm ridges. In Plymouth, biological complexity was also manipulated through seeding tiles with habitat-forming mussels. The effects of the manipulations on taxon and functional richness, and community composition were assessed at both locations, and in Plymouth the survival and size of seeded mussels and abundance and size of recruited mussels were also assessed. Effects of physical complexity differed between locations. Physical complexity did not influence richness or community composition in Plymouth, while in Tel Aviv, there were effects of complexity on community composition. In Plymouth, effects of biological complexity were found with mussel seeding reducing taxon richness, supporting larger recruited mussels, and influencing community composition. Our results suggest that outcomes of NbS experiments are context-dependent and highlight the risk of extrapolating the findings outside of the context in which they were tested.


2016 ◽  
Author(s):  
Dave W Armitage

Biodiversity-ecosystem function (BEF) experiments routinely employ common garden designs, drawing samples from a local biota. The communities from which taxa are sampled may not, however, be at equilibrium. To test for temporal changes in BEF relationships, I assembled pools of aquatic bacterial strains isolated at different time points from leaves on the pitcher plant Darlingtonia californica in order to evaluate the strength, direction, and drivers of the BEF relationship across a natural host-associated successional gradient. I constructed experimental communities using bacterial isolates from each time point and measured their respiration rates and competitive interactions. Communities assembled from mid-successional species pools showed the strongest positive relationships between community richness and respiration rates, driven primarily by linear additivity among isolates. Diffuse competition was common among all communities but greatest within mid-successional isolates. These results demonstrate the dependence of the BEF relationship on the temporal dynamics of the local species pool, implying that ecosystems may respond differently to the addition or removal of taxa at different points in time during succession.


2020 ◽  
Author(s):  
Devin R. Leopold ◽  
Tadashi Fukami

AbstractLocal ecological communities tend to contain more species when they are located within a geologically older region, a pattern that has traditionally been attributed to the accumulation of species in the regional species pool. In this explanation, local species interactions are assumed to play a minor role in the formation of the regional species pool, which is instead thought to be driven by speciation and dispersal occurring across larger areas. Here, we provide evidence suggesting a more important role of local species interactions than generally assumed. In an experiment in which we assembled 320 local communities of root-associated fungi under 80 species pools, we varied the species richness of the experimental species pools and the mean age of the sites from which we collected the fungal species across a 4-myr soil chronosequence in Hawaii. We found that realized local species diversity in the assembled communities increased more extensively with increasing species-pool richness when species were from older sites. We also found that older species pools had lower functional and phylogenetic diversity, indicating that the evolution of greater competitive equivalence among potential colonists enabled higher local diversity under older species pools. Our results suggest that the tendency of older regions to have higher local richness arises not simply because older species pools are more speciose, but also because the constituent species have evolved traits that allow them to co-occur more readily in local communities.


2020 ◽  
Vol 47 (4) ◽  
pp. 879-889
Author(s):  
Dirk Nikolaus Karger ◽  
Rafael O. Wüest ◽  
Christian König ◽  
Juliano Sarmento Cabral ◽  
Patrick Weigelt ◽  
...  

2016 ◽  
Author(s):  
Dave W Armitage

Biodiversity-ecosystem function (BEF) experiments routinely employ common garden designs, drawing samples from a local biota. The communities from which taxa are sampled may not, however, be at equilibrium. To test for temporal changes in BEF relationships, I assembled pools of aquatic bacterial strains isolated at different time points from leaves on the pitcher plant Darlingtonia californica in order to evaluate the strength, direction, and drivers of the BEF relationship across a natural host-associated successional gradient. I constructed experimental communities using bacterial isolates from each time point and measured their respiration rates and competitive interactions. Communities assembled from mid-successional species pools showed the strongest positive relationships between community richness and respiration rates, driven primarily by linear additivity among isolates. Diffuse competition was common among all communities but greatest within mid-successional isolates. These results demonstrate the dependence of the BEF relationship on the temporal dynamics of the local species pool, implying that ecosystems may respond differently to the addition or removal of taxa at different points in time during succession.


2016 ◽  
Vol 283 (1838) ◽  
pp. 20161437 ◽  
Author(s):  
David W. Armitage

Biodiversity–ecosystem function (BEF) experiments routinely employ common garden designs, drawing samples from a local biota. The communities from which taxa are sampled may not, however, be at equilibrium. To test for temporal changes in BEF relationships, I assembled the pools of aquatic bacterial strains isolated at different time points from leaves on the pitcher plant Darlingtonia californica in order to evaluate the strength, direction and drivers of the BEF relationship across a natural host-associated successional gradient. I constructed experimental communities using bacterial isolates from each time point and measured their respiration rates and competitive interactions. Communities assembled from mid-successional species pools showed the strongest positive relationships between community richness and respiration rates, driven primarily by linear additivity among isolates. Diffuse competition was common among all communities but greatest within mid-successional isolates. These results demonstrate the dependence of the BEF relationship on the temporal dynamics of the local species pool, implying that ecosystems may respond differently to the addition or removal of taxa at different points in time during succession.


Author(s):  
Simon F. Thrush ◽  
Judi E. Hewitt ◽  
Conrad A. Pilditch ◽  
Alf Norkko

This chapter provides insight into the biodiversity of soft sediments, and how it can be measured using a range of univariate, bivariate and multivariate techniques. It highlights that biodiversity can be described across a range of organisational scales and includes the extension of diversity to cover habitats, behavioural characteristics (biological traits) and functional traits. Scale is an important characterisation of biodiversity and the chapter discusses scale both in its effect on the measurement of biodiversity and also for how it links the components of α‎-, β‎- and γ‎-diversity. These linkages are crucial to help us understand the roles of heterogeneity, species turnover and the ecological connections between local species richness and regional species pools. Most species are rare and thus any description of biodiversity would not be complete without consideration of rarity and its contribution to community structure and dynamics.


Sign in / Sign up

Export Citation Format

Share Document