scholarly journals A Meta-Analysis of Avian Egg Traits Cueing Egg-Rejection Defenses Against Brood Parasitism

2021 ◽  
Vol 9 ◽  
Author(s):  
Peter Samaš ◽  
Mark E. Hauber ◽  
Marcel Honza

The capability of hosts to reject the odd egg from their nest is one of the key defenses against avian brood parasitism. Considerable research effort has been devoted to exploring which phenotypic traits of eggshells facilitate to cue the recognition of the parasitic egg. Here we have reviewed studies addressing salient egg traits involved in the rejection of foreign eggs and used a formal meta-analysis to quantify their relative importance. Hosts appear to rely to a large extent on eggshell color traits, followed by maculation patterns. Hosts respond with similar rates of egg rejection to natural vs. model eggs and when breeding in both closed and open nests. Analyses of experiments on hosts of Cuculus and Molothrus parasites, the two best studied brood parasitic lineages with different co-evolutionary histories, yield similar conclusions. We also identify several poorly studied potential egg recognition cues, such as odor or weight, and recommend exploring even the visual traits in more detail, including chromatic and achromatic contrasts or experimentally manipulated egg maculation characteristics. Recent technological and sensory ecological advances open many new research avenues to experimentally examine the role of diverse egg characteristics in antiparasite defenses.

2020 ◽  
Vol 13 (1-2) ◽  
pp. 24-31
Author(s):  
Alec B Luro ◽  
Mark E Hauber

Egg rejection is a common and effective defense against avian brood parasitism in which the host either marginalizes or removes the parasitic egg or deserts the parasitized clutch. The ability to recognize and reject a parasitic egg depends on bill morphology, sensory systems, and cognition, all of which are also shaped by other selective processes such as foraging. This begs the question whether specific phenotypes associated with different foraging strategies and diets may constrain or facilitate egg recognition and rejection. Here, we propose a novel hypothesis that host species phenotypes related to foraging ecology and diet may impose morphological and visual sensory constraints on the evolution of egg recognition and rejection. We conducted a comparative analysis of the adult diets and egg rejection rates of 165 current host and non-host species. We found that species have significantly higher egg rejection rates when they (1) consume an omnivorous or animal and fruit dominated diet rather than seeds and grains, (2) forage arboreally rather than aerially or on the ground, or (3) possess relatively larger body sizes. Although correlational in nature, as predicted, these results suggest phenotypes related to specific diets and foraging ecologies may differentially constrain or facilitate evolution of host egg rejection defenses against avian brood parasitism.


2019 ◽  
Vol 374 (1769) ◽  
pp. 20180200 ◽  
Author(s):  
Canchao Yang ◽  
Wei Liang ◽  
Anders P. Møller

Before complex nests evolved, birds laid eggs on the ground, and egg retrieval evolved as an adaptation against accidental displacement of eggs outside the nest. Therefore, egg retrieval is an ancient, and likely ancestral, widespread behaviour in birds. However, it has received little attention in studies of avian brood parasitism, perhaps because most parasitism occurs in species with complex nests, a context in which egg retrieval seems irrelevant. However, for cavity-nesting hosts of avian brood parasites, egg retrieval may still play an important role in the coevolutionary interactions between obligate brood parasites and hosts, because egg retrieval can be considered to be antagonistic to egg rejection behaviour in hosts, yet both may involve cognition to recognize eggs. We hypothesized that (1) cavity-nesting hosts should retrieve misplaced eggs from outside the nest cup, (2) brood parasitism has modulated egg retrieval behaviour in cavity-nesting hosts and (3) hosts use the same visual cues for decision-making during egg recognition in both egg retrieval and egg rejection actions. To test these hypotheses, we performed a series of experiments in a cavity-nesting host, the green-backed tit (Parus monticolus). Foreign eggs with different levels of mimicry were placed within or outside nest cups of hosts to test their responses. We found that host decisions about whether to retrieve or reject an egg both depended on the degree of mimicry. However, hosts sometimes first retrieved poorly mimetic foreign eggs and then rejected them. Alternatively, hosts sometimes failed to retrieve highly mimetic conspecific eggs. We suggest that egg retrieval in hosts is likely to be a result of the interaction between ancient retrieval behaviour and subsequent adaptation against brood parasitism.This article is part of the theme issue ‘The coevolutionary biology of brood parasitism: from mechanism to pattern’.


2018 ◽  
Author(s):  
Alec B. Luro ◽  
Mark E. Hauber

AbstractEgg rejection is the most common defense against avian brood parasitism in which the host either removes the parasitic egg or deserts the parasitized clutch. The ability to recognize and reject a parasitic egg depends on bill morphology, sensory systems, and cognition, all of which are also shaped by other selective processes, such as foraging. This begs the question whether specific phenotypes associated with different foraging strategies and diets may constrain or facilitate egg recognition and rejection. Here, we propose a novel hypothesis that host species phenotypes related to foraging ecology and diet impose morphological and sensory constraints on the evolution of egg rejection. We conducted a comparative analysis of the adult diets and egg rejection rates of 165 current host and non-host species and found species that consume an animal and fruit dominated diet rather than seeds and grains, forage arboreally rather than aerially, and possess relatively larger body sizes have significantly higher egg rejection rates. As predicted, these results suggest that phenotypes related to specific diets and foraging strategies may differentially constrain or facilitate evolution of host egg rejection defenses against avian brood parasitism.


2021 ◽  
Author(s):  
Qihong Li ◽  
Jianli Bi ◽  
Jiangwen Wu ◽  
Canchao Yang

Abstract Egg rejection in birds is a specific adaptation toward avian brood parasitism, while nest sanitation is a general behavior for cleaning the nest and avoiding predation. However, both behaviors refer to the action of ejecting objects out of the nest, and nest sanitation has been proposed as a pre-adaptation for egg rejection. Here we tested the eliciting effect of nest sanitation on egg rejection in the red-whiskered bulbul Pycnonotus jocosus, a potential host species that is sympatric with parasitic cuckoos. We conducted meta-analyses of previous studies on both nest sanitation and egg rejection, in order to evaluate the consistency of our conclusions. Our results showed that nest sanitation did not elicit egg rejection in P. jocosus. The conclusions concerning such an eliciting effect from previous studies were mixed, while the methodologies were inconsistent, making the studies unsuitable for comparisons. However, the ejection frequency of nest sanitation was consistently higher than the frequency of egg rejection across different host species or populations. These results suggest that nest sanitation, which is an ancient behavior, is more fundamental than egg rejection, but the effect of the former on the latter is complex and needs further study. Standardized methodologies and the integration of behavior, physiology, and modeling may provide better opportunities to explore the relationship between nest sanitation and egg rejection.


2015 ◽  
Vol 11 (7) ◽  
pp. 20150296 ◽  
Author(s):  
Iliana Medina ◽  
Naomi E. Langmore

Many bird species can reject foreign eggs from their nests. This behaviour is thought to have evolved in response to brood parasites, birds that lay their eggs in the nest of other species. However, not all hosts of brood parasites evict parasitic eggs. In this study, we collate data from egg rejection experiments on 198 species, and perform comparative analyses to understand the conditions under which egg rejection evolves. We found evidence, we believe for the first time in a large-scale comparative analysis, that (i) non-current host species have rejection rates as high as current hosts, (ii) egg rejection is more likely to evolve when the parasite is relatively large compared with its host and (iii) egg rejection is more likely to evolve when the parasite chick evicts all the host eggs from the nest, such as in cuckoos. Our results suggest that the interactions between brood parasites and their hosts have driven the evolution of egg rejection and that variation in the costs inflicted by parasites is fundamental to explaining why only some host species evolve egg rejection.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Jiaojiao Wang ◽  
Qihong Li ◽  
Canchao Yang

Abstract The mutually antagonistic processes producing adaptations and counter-adaptations in avian brood parasites and their hosts provide a model system for the study of coevolution; this topic has long been an area of focus in ornithology and evolutionary biology. Although there is an extensive body of literature dealing with avian brood parasitism, few empirical studies have considered the effects of the coevolutionary processes associated with brood parasitism on the acoustic characteristics of parent–offspring communication. Under the strong selection pressures associated with brood parasitism, parasitic birds may, for instance, produce deceptive songs. The host may in turn evolve the ability to recognize these sounds as deceptive. At present, the mechanisms underlying the different competitive strategies employed by hosts and parasitic birds remain unclear. Here, we reviewed previous studies that investigated acoustic traits in scenarios of brood parasitism, highlighting possible adaptive functions. Using a meta-analysis, we identified no heterogeneity among studies of begging call adaptations in parasitic nestlings. However, our results may have been affected by the small number of applicable papers available for analysis. Our meta-analysis also suggested that studies of acoustic communication and transmission in adult hosts were highly heterogenous, suggesting that research methods were inconsistent among studies. Finally, we identified knowledge gaps and proposed several lines of future research.


2011 ◽  
Vol 23 (2) ◽  
pp. 397-402 ◽  
Author(s):  
Wei Liang ◽  
Canchao Yang ◽  
Anton Antonov ◽  
Frode Fossøy ◽  
Bård G. Stokke ◽  
...  

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Jianping Liu ◽  
Canchao Yang ◽  
Jiangping Yu ◽  
Haitao Wang ◽  
Wei Liang

Abstract Background Brood parasitic birds such as cuckoos (Cuculus spp.) can reduce their host’s reproductive success. Such selection pressure on the hosts has driven the evolution of defense behaviors such as egg rejection against cuckoo parasitism. Studies have shown that Cinereous Tits (Parus cinereus) in China have a good ability for recognizing foreign eggs. However, it is unclear whether egg spots play a role in egg recognition. The aims of our study were to investigate the egg recognition ability of two Cinereous Tit populations in China and to explore the role of spots in egg recognition. Methods To test the effect of eggshell spots on egg recognition, pure white eggs of the White-rumped Munia (Lonchura striata) and eggs of White-rumped Munia painted with red brown spots were used to simulate experimental parasitism. Results Egg experiments showed that Cinereous Tits rejected 51.5% of pure white eggs of the White-rumped Munia, but only 14.3% of spotted eggs of the White-rumped Munia. There was a significant difference in egg recognition and rejection rate between the two egg types. Conclusions We conclude that eggshell spots on Cinereous Tit eggs had a signaling function and may be essential to tits for recognizing and rejecting parasitic eggs.


2009 ◽  
Vol 6 (1) ◽  
pp. 67-69 ◽  
Author(s):  
Nozomu J. Sato ◽  
Kihoko Tokue ◽  
Richard A. Noske ◽  
Osamu K. Mikami ◽  
Keisuke Ueda

As avian brood parasitism usually reduces hosts' reproductive success, hosts often exhibit strong defence mechanisms. While such host defences at the egg stage (especially egg rejection) have been extensively studied, defence mechanisms at the nestling stage have been reported only recently. We found a previously unknown anti-parasitism behaviour in the large-billed Gerygone, which is a host species of the little bronze-cuckoo, a host-evicting brood parasite. The hosts forcibly pulled resisting nestlings out of their nests and dumped them. Although it has been suggested that defence mechanisms at the nestling stage may evolve when host defence at the egg stage is evaded by the parasite, the studied host seems to lack an anti-parasitism strategy at the egg stage. This suggests that the evolutionary pathway may be quite different from those of previously studied cuckoo–host systems. Future research on this unique system may give us new insights into the evolution of avian brood parasitism.


Sign in / Sign up

Export Citation Format

Share Document