scholarly journals Air Warming and Drainage Influences Soil Microarthropod Communities

2021 ◽  
Vol 9 ◽  
Author(s):  
Hui Zhang ◽  
Xin Sun ◽  
Dong Liu ◽  
Haitao Wu ◽  
Huai Chen

The degradation of wetlands due to climate change is of critical concern to human beings worldwide. Little is known about the potential synergistic effects of simultaneous water level reduction and warming on the underground wetland ecosystems. We conducted a 5-month field experiment in the Sanjiang Plain, utilizing open-top chambers and water level automatic control systems to investigate such synergistic effects. Soil springtails (Collembola) and mites (Acari) in the top (0–20 cm) soil layers were sampled to calculate their density, diversity, and to screen for indicator species. Warming significantly influenced soil springtail communities, slightly increasing the total density and total abundance under the natural water level while reducing them under a constant water level. In addition, Anurida maritima and Vertagopus laricis, two indicators for the natural water level, had the highest densities in the natural water level treatment and under the combined treatment of warming and natural water level, respectively. Cheiroseius sinicus and Malaconothrus tardus had the highest densities in warming under the 0 cm water level, significantly higher than the other three treatments. This study also revealed the importance of maintaining fluctuating water levels for microarthropod communities influenced by global warming, providing a theoretical basis for water level control in wetland restoration.

2013 ◽  
Vol 1 (3) ◽  
Author(s):  
Indra Saputra ◽  
Lukmanul Hakim ◽  
Sri Ratna S

Feed water tank merupakan salah satu komponen pada boiler yang memiliki fungsi penting dalam menyuplai air ke boiler. Level air pada feed water tank harus tetap dijaga agar tidak terjadi kekosongan saat proses pengisian air ke boiler. Selama ini operator masih memantau secara langsung level air pada feed water tank. Sehingga diperlukan sistem otomasi water level control yang dapat membantu operator dalam mengontrol dan memantau level air pada feed water tank. Sistem otomasi water level control dikendalikan oleh PLC Omron Sysmac C200H dengan menggunakan panel push button yang terpasang pada plant atau juga dapat dikendalikan dan dimonitor melalui melalui PC menggunakan software SCADA Wonderware InTouch 10.5. Selain itu sistem otomasi menggunakan SCADA ini dilengkapi password sebagai pengaman dari orang yang tidak bertanggung jawab. Kata kunci : PLC, SCADA, water level control, feed water tank Feed water tank is one component of the boiler system which has an important function in supplying water to the boiler. Water levels in feed water tank is must be maintaned to avoid emptiness at filling process to the boiler. Previously, the operator directly to monitors water level in the feed water tank. Therefore, a control mechanisem is required to help the operators to control and monitor the water level in the feed water tank autonomously. In this system, water level is controlled by PLC Omron C200H Sysmac using the push button panel attached to the plant or also can be controlled and monitored by PC using Wonderware InTouch 10.5. In addition, SCADA system is equipped with a password to secure from irresponsible people.Key word : PLC, SCADA, water level control, feed water tank


2021 ◽  
Author(s):  
◽  
Cheng Shi

<p>Wetlands are areas where lands transition to water bodies. Because of this special geomorphological setting, wetlands play important roles in flood control, nutrient retention, and water storage. In New Zealand, less than ten percent of the original wetlands have survived since human settlement. Many of the remaining wetlands are still under threat from water quality degradation, invasive species, and changes in hydrological regime. Wetland restoration is the process of bringing the structure and function of a wetland back to its original state. Although specific objectives may vary between different projects, three major objectives of wetland restoration are restoration of wetland function, restoration of wetland structure, and restoration of traditional landscape and land-use practices. In order to ensure the success of a wetland restoration project, a good understanding of the hydrological process in the wetland is the first step. Boggy Pond and Matthews Lagoon are located at the eastern edge of Lake Wairarapa in the Wellington Region. They formed as a result of the deposition of sanddunes on the eastern shore and changes in river courses between floods. They were modified by a series of engineering works under the lower Wairarapa valley development scheme in the 1980s. As a result, Matthews Lagoon now receives agricultural outputs from surrounding farms; it is affected by water pollution and invasive plant species. Boggy Pond is cut off from Lake Wairarapa and surrounding wetlands by a road and stopbank, leaving a more stable water level compared to its original state. To analyse the water and nutrient balance in these two wetlands, factors such as surface flows, surface water levels, groundwater levels, rainfall, climate data, and water quality were assessed at various monitoring stations in this study. It is believed that Matthews Lagoon and Boggy Pond have completely different water regimes. Matthews Lagoon receives surface inflow from the Te Hopai drainage scheme and discharges to Oporua floodway, but Boggy Pond only has rainfall as the water input. The results from the water balance analysis seem to support this assumption. An unexpected finding in Matthews Lagoon suggests that water might bypass the main wetland, creating a shortcut between the inlet and outlet. As a result, the nutrient removal ability was considerably weakened by this bypass because of the short water retention time. In Boggy Pond, there may be an unknown water input which could adversely affect the water quality and natural water regime. Boggy Pond is expected to have better water quality than Matthews Lagoon as the latter receives agricultural drainage from surrounding farms. The results from water quality monitoring also support this hypothesis. The nutrient balance in Matthews Lagoon showed very limited removal ability for phosphate but much higher removal rate for nitrate. The removal rate in summer for phosphate was less than 5% while in winter more phosphate was discharged from Matthews Lagoon than it received from Te Hopai drainage scheme. For nitrate pollutants, the removal rate was as high as 17% even in winter. Some recommendations are given on the restoration of these two wetlands. First, set proper objectives according to their different functions. Second, enhance the nutrient removal ability of Matthews Lagoon by harvesting plants, removing old sediments, and creating a more evenly distributed flow across the wetland throughout the year. Third, restore the natural water level fluctuations and improve water quality in Boggy Pond by identifying any unknown water inputs first.</p>


2021 ◽  
Author(s):  
◽  
Cheng Shi

<p>Wetlands are areas where lands transition to water bodies. Because of this special geomorphological setting, wetlands play important roles in flood control, nutrient retention, and water storage. In New Zealand, less than ten percent of the original wetlands have survived since human settlement. Many of the remaining wetlands are still under threat from water quality degradation, invasive species, and changes in hydrological regime. Wetland restoration is the process of bringing the structure and function of a wetland back to its original state. Although specific objectives may vary between different projects, three major objectives of wetland restoration are restoration of wetland function, restoration of wetland structure, and restoration of traditional landscape and land-use practices. In order to ensure the success of a wetland restoration project, a good understanding of the hydrological process in the wetland is the first step. Boggy Pond and Matthews Lagoon are located at the eastern edge of Lake Wairarapa in the Wellington Region. They formed as a result of the deposition of sanddunes on the eastern shore and changes in river courses between floods. They were modified by a series of engineering works under the lower Wairarapa valley development scheme in the 1980s. As a result, Matthews Lagoon now receives agricultural outputs from surrounding farms; it is affected by water pollution and invasive plant species. Boggy Pond is cut off from Lake Wairarapa and surrounding wetlands by a road and stopbank, leaving a more stable water level compared to its original state. To analyse the water and nutrient balance in these two wetlands, factors such as surface flows, surface water levels, groundwater levels, rainfall, climate data, and water quality were assessed at various monitoring stations in this study. It is believed that Matthews Lagoon and Boggy Pond have completely different water regimes. Matthews Lagoon receives surface inflow from the Te Hopai drainage scheme and discharges to Oporua floodway, but Boggy Pond only has rainfall as the water input. The results from the water balance analysis seem to support this assumption. An unexpected finding in Matthews Lagoon suggests that water might bypass the main wetland, creating a shortcut between the inlet and outlet. As a result, the nutrient removal ability was considerably weakened by this bypass because of the short water retention time. In Boggy Pond, there may be an unknown water input which could adversely affect the water quality and natural water regime. Boggy Pond is expected to have better water quality than Matthews Lagoon as the latter receives agricultural drainage from surrounding farms. The results from water quality monitoring also support this hypothesis. The nutrient balance in Matthews Lagoon showed very limited removal ability for phosphate but much higher removal rate for nitrate. The removal rate in summer for phosphate was less than 5% while in winter more phosphate was discharged from Matthews Lagoon than it received from Te Hopai drainage scheme. For nitrate pollutants, the removal rate was as high as 17% even in winter. Some recommendations are given on the restoration of these two wetlands. First, set proper objectives according to their different functions. Second, enhance the nutrient removal ability of Matthews Lagoon by harvesting plants, removing old sediments, and creating a more evenly distributed flow across the wetland throughout the year. Third, restore the natural water level fluctuations and improve water quality in Boggy Pond by identifying any unknown water inputs first.</p>


2005 ◽  
Vol 52 (6) ◽  
pp. 195-203 ◽  
Author(s):  
L. Somlyódy ◽  
M. Honti

Balaton is the largest shallow lake in Central Europe and the most important recreational area in Hungary. Water balance of the lake is positive, while natural water level fluctuation has been significant. In 2000, an extreme drought period started. Until 2003, water level dropped about 70 cm (about 20% of the average depth). Public concern grew and the idea of water transfer from the Rába River was raised. To examine possible impacts a comprehensive study was prepared. The main question was whether water transfer was really needed and what criterion should be applied. For developing the methodology, three pillars were used: the potential climate change, the precautionary principle and the EU Water Framework Directive. The study covered impacts of the planned water transfer on the Rába–Balaton system in terms of changes of the water regime, water demands and quality, nutrient loads and ecosystems. The Thomas–Fiering ARMA model was used for characterizing monthly change of the natural water resources of the lake. A Monte Carlo generator was developed to analyze the occurrence of extreme events, uncertainties, possible climate change impacts and water level control strategies.


Author(s):  
Mulyono Mulyono ◽  
Hanny J Berchmans

In common mini hydro power plants in Indonesia, the control of water levels in intake, sand-trap and head pond is carried out manually. This conventional manual control system may cause damages of waterway and all its components due to overflow or transient flow of water during load shedding or black out of electricity grid. The damages eventually may increase cost of maintenance and increase the risk of waterway collapse or excessive water hammer in penstock pipe. This type of collapses often happen in many mini hydro power plants in Indonesia. The risk of damages can be reduced by installing water level control and monitoring system in all key water way components such as in intake, sand-trap and head pond. Some other mini hydro power plants have installed water level control and monitoring system. But the price of such control system is still very expensive and high operation and maintenance cost. Thus, this thesis work designs and simulates simple and inexpensive the water level control and monitoring system for a mini hydro power plant. In this thesis work, the design and simulation of the water level control and monitoring system are carried out by a simulated three water tanks where the water levels in the tanks are monitored and controlled by using ultrasonic level sensors and motorized valves respectively. A simple and inexpensive Arduino based water level control and monitoring system is successfully designed to fulfil the requirement of quick or fast respond for water level control in the simulated model.


2017 ◽  
Vol 37 (10) ◽  
Author(s):  
王继丰 WANG Jifeng ◽  
韩大勇 HAN Dayong ◽  
王建波 WANG Jianbo ◽  
付晓玲 FU Xiaoling ◽  
朱道光 ZHU Daoguang ◽  
...  

2002 ◽  
Vol 122 (6) ◽  
pp. 989-994
Author(s):  
Shinichiro Endo ◽  
Masami Konishi ◽  
Hirosuke Imabayashi ◽  
Hayami Sugiyama

Sign in / Sign up

Export Citation Format

Share Document