scholarly journals Water Use, Efficiency, and Stomatal Sensitivity in Eastern Cottonwood and Hybrid Poplar Varietals on Contrasting Sites in the Southeastern United States

2021 ◽  
Vol 4 ◽  
Author(s):  
Heidi J. Renninger ◽  
Leah F. Stewart ◽  
Randall J. Rousseau

The southeastern United States has wide-scale potential to achieve high productivity from elite eastern cottonwood and hybrid poplar varietals to produce renewable bioenergy and bioproducts. In order to determine how environmental drivers impact water use and growth so that individuals can maintain growth during drought periods, varietals that use water efficiently, and/or tolerate water stress conditions, are needed to make planting recommendations across a variety of sites. Additionally, inoculation with nitrogen-fixing endophytic bacteria may improve water stress tolerance. The goals of this research were (1) to determine water use strategies using measurements of diurnal sapflow and differences in leaf retention for three eastern cottonwood (Populus deltoides, ST66, S7C8, and 110412) and three hybrid poplar (two P. deltoides × Populus maximowiczii, 6329 and 8019, and one Populus trichocarpa × P. deltoides, 5077) varietals on contrasting field sites, (2) determine the physiological impact of endophyte inoculation, and (3) determine which physiological parameters were most highly correlated with aboveground biomass. We found that whole-tree water use efficiency (WUE) was similar across varietals at 5.2 g biomass per kg water used and that water use scaled with tree size. We found that water use strategies in terms of scaled stomatal sensitivity to vapor pressure deficit converged across varietals under stressful soil water conditions at both sites, but that varietals 8019 and 110412 tended to exhibit the highest plasticity in stomatal sensitivity exhibiting the largest range in scaled stomatal sensitivity under different soil moisture conditions. Endophyte inoculation increased growth and stomatal sensitivity at the nitrogen-limited site. Leaf area, whole-tree WUE, and plasticity in stomatal sensitivity were correlated with aboveground biomass production across sites and varietals. Overall, these data can be used to model hydrologic impacts of large-scale Populus biofuel production as well as recommend varietals with efficient water use and stomatal sensitivity under a range of soil and atmospheric moisture stress factors.

2019 ◽  
Vol 692 ◽  
pp. 1125-1134
Author(s):  
Jerome J. Maleski ◽  
David D. Bosch ◽  
Ray G. Anderson ◽  
Alisa W. Coffin ◽  
William F. Anderson ◽  
...  

Agronomy ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 1034
Author(s):  
Anita Ierna ◽  
Giovanni Mauromicale

Since water is increasingly becoming an expensive and limited resource, it is necessary to improve crop water use efficiency (WUE) to save water while maintaining high yields. The objective of this research was to evaluate the effects of moderate water stress compared to well-watered conditions (supplying 50 or 100% of the maximum evapotranspiration (ETm)) on dry aboveground biomass yield (AB-Y), dry whole biomass yield (WB), tuber yield, irrigation WUE, and WUE at early harvest (E-TY, E-IWUE, E-YWUE), and at final harvest (F-TY, F-IWUE, F-YWUE), on WUE for dry aboveground biomass (AB-WUE) and for dry whole biomass (WB-WUE), on sink/source ratio and dry matter content of tubers in two potato cultivars—Sieglinde and Spunta, in two planting dates (early and late). Moderate water stress, compared to well-watered conditions, resulted in a small decrease in E-TY (−14%) and F-TY (−11%), but a high increase in E-IWUE (+69%) and F-IWUE (+78%), making savings in irrigation water of roughly 380 or 600 m3 per crop cycle in relation to early or final harvest. Moderate water stress improved in Sieglinde IWUE, YWUE, and WB-WUE at final harvest, whereas Spunta appeared more appropriate for early harvest. In the late planting date, the crop used water better compared to the early planting, resulting in a greater increase in IWUE (+77 vs. +66%) and an, albeit, slight increase in the WUE. It would, therefore, be convenient to apply the moderate water stress in the late planting, saving a further 100 m3 of irrigation water. The highest yield, IWUE, and YWUE were reached when moderate water stress was applied in both planting dates on cv. Spunta for early harvest and on cv. Sieglinde for final harvest. It was possible to increase WUE indices and save water, not only by water management, but also by choosing opportune planting dates and cultivars.


1993 ◽  
Vol 41 (3) ◽  
pp. 293 ◽  
Author(s):  
T Brodribb ◽  
RS Hill

Leaves and phyllodes of A. melanoxylon were compared in several aspects of their physiology. Changes in gas exchange and water use efficiency (WUE) under controlled conditions of vapour pressure deficit (vpd) and foliar water potential were examined. Water use efficiency in phyllodes remained constant under a wide range of evaporative demand due to high stomatal sensitivity to vpd. Leaf stomata were less sensitive to changes in vpd causing decreased WUE with increased vpd. Under water stress phyllodes survived longer and produced higher WUE than leaves. Maximum photosynthetic rates per unit foliar area were higher in phyllodes than leaves. Thus, phyllodes have a number of advantages over leaves under conditions of long and short term water stress and high irradiance. Leaves had a higher photosynthetic rate per unit of photosynthetic investment than phyllodes, suggesting that their function is to maximise growth during the seedling phase.


2020 ◽  
Vol 47 (4) ◽  
Author(s):  
Arshdeep Singh ◽  
Sanjiv Kumar ◽  
Sathish Akula ◽  
David M. Lawrence ◽  
Danica L. Lombardozzi

2008 ◽  
Vol 56 (2) ◽  
pp. 109 ◽  
Author(s):  
Katy E. Sommerville ◽  
Jennifer Read

Nothofagus cunninghamii (Hook.) Oerst. and Atherosperma moschatum Labill. co-occur in cool-temperate rainforest across the wetter parts of Tasmania and Victoria, Australia, but A. moschatum extends to drier areas than N. cunninghamii. Possible reasons include differential tolerance of drought and fire or dispersal capacity. Here, we compare these species in their responses to water deficits. Differences in seedling survival, leaf tissue damage, shoot water relations, stomatal sensitivity, allocation of biomass and the long-term water-use efficiency of each species in response to water stress were investigated. N. cunninghamii showed traits typical of a high-water-use species, such as high stomatal conductance, a strategy that is not surprising in a rainforest species. However, it also displayed an exceptional ability to draw water from the soil and longer seedling roots, allowing replacement of water lost, at least in the short term. A. moschatum showed a more conservative water-use strategy, surviving greater internal dehydration with less damage, and displaying greater stomatal sensitivity to drought and long-term water-use efficiency in trees. The apparently superior long-term drought resistance of A. moschatum may in part explain its more common occurrence in drier regions than N. cunninghamii, at least in Tasmania, while the capacity of N. cunninghamii to survive short but severe periods of water stress correlates well with its higher position in the canopy and greater exposure to sunlight and desiccating winds. However, there is little evidence to suggest that the absence of N. cunninghamii from the rainforests of eastern Victoria is due to drought. We also suggest that the water-use strategy of N. cunninghamii may relate not just to surviving water deficits, but to maximising annual carbon gain in a temperate climate that is, on average, driest during the warmest time of the year.


2012 ◽  
Vol 212-213 ◽  
pp. 578-585
Author(s):  
Zhong Wen Yang ◽  
Jun Ying Jin ◽  
Xin Yi Xu

Water stress is an important approach to use water resources efficiently and remit the agricultural water shortage. Hemarthria compressa is one of perennial grasses, a pasture of high quality, which has abundant species resources in China. To explore the response of the growth, yield and water use efficiency(WUE) of Hemarthria compressa under water stress, this study, adapting pot experiment, imposed three water stress degree (LD, MD and SD) treatments and a control treatment on Hemarthria compressa. The data of growth indicators during control period, yield and total water consumption were obtained. The results show a noticeable inhibitory action of water stress on the growth of Hemarthria compressa. Along with the intensifying of water stress, plant height increment, leaf area, total biomass, dry matter of each organ and yield decreased, and the root-shoot ratio increased firstly and inclined to slump finally. Plants under the middle water stress treatment achieved the greatest WUE of 38.25 kg/m3. The first 10d in the water control period was the most sensitive period of the pasture responding to water stress.


HortScience ◽  
2018 ◽  
Vol 53 (12) ◽  
pp. 1784-1790 ◽  
Author(s):  
Dalong Zhang ◽  
Yuping Liu ◽  
Yang Li ◽  
Lijie Qin ◽  
Jun Li ◽  
...  

Although atmospheric evaporative demand mediates water flow and constrains water-use efficiency (WUE) to a large extent, the potential to reduce irrigation demand and improve water productivity by regulating the atmospheric water driving force is highly uncertain. To bridge this gap, water transport in combination with plant productivity was examined in cucumber (Cucumis sativus L.) grown at contrasting evaporative demand gradients. Reducing the excessive vapor pressure deficit (VPD) decreased the water flow rate, which reduced irrigation consumption significantly by 16.4%. Reducing excessive evaporative demand moderated plant water stress, as leaf dehydration, hydraulic limitation, and excessive negative water potential were prevented by maintaining water balance in the low-VPD treatment. The moderation of plant water stress by reducing evaporative demand sustained stomatal function for photosynthesis and plant growth, which increased substantially fruit yield and shoot biomass by 20.1% and 18.4%, respectively. From a physiological perspective, a reduction in irrigation demand and an improvement in plant productivity were achieved concomitantly by reducing the excessive VPD. Consequently, WUE based on the criteria of plant biomass and fruit yield was increased significantly by 43.1% and 40.5%, respectively.


2006 ◽  
Vol 131 (3) ◽  
pp. 345-351 ◽  
Author(s):  
J. Ryan Stewart ◽  
William R. Graves ◽  
Reid D. Landes

Carolina buckthorn [Rhamnus caroliniana Walt. or Frangula caroliniana (Walt.) Gray] is an attractive and water-stress-resistant shrub or small tree distributed extensively in the southeastern United States that merits use in managed landscapes. Due to substantial climatic differences within its distribution (30-year normal midwinter minima range from 13 to -8 °C), selection among provenances based on differences in cold hardiness is warranted. Before selections are marketed, the potential of carolina buckthorn to be invasive also merits investigation. Ecological problems resulting from the introduction of Rhamnus L. species in the United States, most notably the dominance of R. cathartica L. (common buckthorn) over neighboring taxa, are due in part to early budbreak. Consequently, we investigated depth of cold hardiness and vernal budbreak of carolina buckthorn and common buckthorn. Stem samples of carolina buckthorn and common buckthorn collected in midwinter survived temperatures as low as -21 and -24 °C, respectively. Although the cold hardiness of carolina buckthorns from Missouri was greater than that of carolina buckthorns from Ohio and Texas on 2 Apr. 2003, there were no differences in cold hardiness of stems from Missouri and Texas on all three assessment dates in the second experiment. All plants survived at both field locations except for the carolina buckthorns from southern Texas planted in Iowa, which showed 0% and 17% survival in 2003 and 2004, respectively. Budbreak of both species with and without mulch in Ames, Iowa, was recorded from 9 Apr. to 10 May 2002. Mean budbreak of common buckthorn was 5.7 days earlier than budbreak of carolina buckthorn, and buds of mulched carolina buckthorns broke 4.2 days earlier than did buds of unmulched carolina buckthorns. We conclude that the cold hardiness of carolina buckthorn is sufficient to permit the species to be planted outside of its natural distribution. Populations of carolina buckthorn in Ohio and Missouri should be the focus of efforts to select genotypes for use in regions with harsh winters. Phenology of its budbreak suggests carolina buckthorn will not be as invasive as common buckthorn, but evaluation of additional determinants of invasiveness is warranted.


Sign in / Sign up

Export Citation Format

Share Document