scholarly journals The FpPPR1 Gene Encodes a Pentatricopeptide Repeat Protein That Is Essential for Asexual Development, Sporulation, and Pathogenesis in Fusarium pseudograminearum

2021 ◽  
Vol 11 ◽  
Author(s):  
Limin Wang ◽  
Shunpei Xie ◽  
Yinshan Zhang ◽  
Ruijiao Kang ◽  
Mengjuan Zhang ◽  
...  

Fusarium crown rot (FCR) and Fusarium head blight (FHB) are caused by Fusarium pseudograminearum and are newly emerging diseases of wheat in China. In this study, we characterized FpPPR1, a gene that encodes a protein with 12 pentatricopeptide repeat (PPR) motifs. The radial growth rate of the ΔFpppr1 deletion mutant was significantly slower than the wild type strain WZ-8A on potato dextrose agar plates and exhibited significantly smaller colonies with sector mutations. The aerial mycelium of the mutant was almost absent in culture tubes. The ΔFpppr1 mutant was able to produce spores, but spores of abnormal size and altered conidium septum shape were produced with a significant reduction in sporulation compared to wild type. ΔFpppr1 failed to cause disease on wheat coleoptiles and barley leaves using mycelia plugs or spore suspensions. The mutant phenotypes were successfully restored to the wild type levels in complemented strains. FpPpr1-GFP signals in spores and mycelia predominantly overlapped with Mito-tracker signals, which substantiated the mitochondria targeting signal prediction of FpPpr1. RNAseq revealed significant transcriptional changes in the ΔFpppr1 mutant with 1,367 genes down-regulated and 1,333 genes up-regulated. NAD-binding proteins, thioredoxin, 2Fe-2S iron-sulfur cluster binding domain proteins, and cytochrome P450 genes were significantly down-regulated in ΔFpppr1, implying the dysfunction of mitochondria-mediated reductase redox stress in the mutant. The mating type idiomorphic alleles MAT1-1-1, MAT1-1-2, and MAT1-1-3 in F. pseudograminearum were also down-regulated after deletion of FpPPR1 and validated by real-time quantitative PCR. Additionally, 21 genes encoding putative heterokaryon incompatibility proteins were down-regulated. The yellow pigmentation of the mutant was correlated with reduced expression of PKS12 cluster genes. Taken together, our findings on FpPpr1 indicate that this PPR protein has multiple functions in fungal asexual development, regulation of heterokaryon formation, mating-type, and pathogenesis in F. pseudograminearum.

2022 ◽  
Author(s):  
Jingya Zhao ◽  
Mengya Peng ◽  
Wenbo Chen ◽  
Xiaoping Xing ◽  
Yixuan Shan ◽  
...  

Fusarium pseudograminearum is a soil-borne, hemibiotrophic phytopathogenic fungus that causes Fusarium crown rot and Fusarium head blight in wheat. The basic leucine zipper proteins (bZIPs) are evolutionarily conserved transcription factors that play crucial roles in a range of growth and developmental processes and the responses to biotic and abiotic stresses. However, the roles of bZIP transcription factors remains unknown in F. pseudograminearum. In this study, a bZIP transcription factor Fpkapc was identified to localize to the nucleus in F. pseudograminearum. A mutant strain (Δfpkapc) was constructed to determine the role of Fpkapc in growth and pathogenicity of F. pseudograminearum. Transcriptomic analyses revealed that many genes involved in basic metabolism and oxidation-reduction processes were down-regulated, whereas many genes involved in metal iron binding were up-regulated in the Δfpkapc strain, compared with the wild type. Correspondingly, the mutant had severe growth defects and displayed abnormal hyphal tips. Conidiation in the Fpkapc mutant was reduced, with more conidia in smaller size and fewer septa than in the wild type. Also, relative to WT, the Δfpkapc strain showed greater replaced by increased tolerance to ion stress, but decreased tolerance to H2O2. The mutant caused smaller disease lesions on wheat and barley plants, but the significantly increased TRI genes expression, compared with the wild type. In summary, Fpkapc plays multiple roles in governing growth, development, stress responses, and virulence in F. pseudograminearum.


2004 ◽  
Vol 70 (4) ◽  
pp. 2437-2444 ◽  
Author(s):  
A. E. Desjardins ◽  
D. W. Brown ◽  
S.-H. Yun ◽  
R. H. Proctor ◽  
T. Lee ◽  
...  

ABSTRACT Gibberella zeae, a self-fertile, haploid filamentous ascomycete, causes serious epidemics of wheat (Triticum aestivum) head blight worldwide and contaminates grain with trichothecene mycotoxins. Anecdotal evidence dating back to the late 19th century indicates that G. zeae ascospores (sexual spores) are a more important inoculum source than are macroconidia (asexual spores), although the fungus can produce both during wheat head blight epidemics. To develop fungal strains to test this hypothesis, the entire mating type (MAT1) locus was deleted from a self-fertile (MAT1-1/MAT1-2), virulent, trichothecene-producing wild-type strain of G. zeae. The resulting MAT deletion (mat1-1/mat1-2) strains were unable to produce perithecia or ascospores and appeared to be unable to mate with the fertile strain from which they were derived. Complementation of a MAT deletion strain by transformation with a copy of the entire MAT locus resulted in recovery of production of perithecia and ascospores. MAT deletion strains and MAT-complemented strains retained the ability to produce macroconidia that could cause head blight, as assessed by direct injection into wheat heads in greenhouse tests. Availability of MAT-null and MAT-complemented strains provides a means to determine the importance of ascospores in the biology of G. zeae and perhaps to identify novel approaches to control wheat head blight.


2019 ◽  
Vol 66 (3) ◽  
pp. 507-515 ◽  
Author(s):  
Linlin Chen ◽  
Yuming Ma ◽  
Jingya Zhao ◽  
Xuejing Geng ◽  
Wenbo Chen ◽  
...  

Abstract Fusarium pseudograminearum is an important pathogen of Fusarium crown rot and Fusarium head blight, which is able to infect wheat and barley worldwide, causing great economic losses. Transcription factors (TFs) of the basic leucine zipper (bZIP) protein family control important processes in all eukaryotes. In this study, we identified a gene, designated FpAda1, encoding a bZIP TF in F. pseudograminearum. The homolog of FpAda1 is also known to affect hyphal growth in Neurospora crassa. Deletion of FpAda1 in F. pseudograminearum resulted in defects in hyphal growth, mycelial branching and conidia formation. Pathogenicity assays showed that virulence of the Δfpada1 mutant was dramatically decreased on wheat coleoptiles and barley leaves. However, wheat coleoptile inoculation assay showed that Δfpada1 could penetrate and proliferate in wheat cells. Moreover, the FpAda1 was required for abnormal nuclear morphology in conidia and transcription of FpCdc2 and FpCdc42. Taken together, these results indicate that FpAda1 is an important transcription factor involved in growth and development in F. pseudograminearum.


Agronomy ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 867
Author(s):  
John P. Thompson ◽  
Timothy G. Clewett

In two experiments on a farm practicing conservation agriculture, the grain yield of a range of wheat cultivars was significantly (p < 0.001) negatively related to the post-harvest population densities of Pratylenchus thornei in the soil profile to 45 cm depth. In a third and fourth experiment with different rotations, methyl bromide fumigation significantly (p < 0.05) decreased (a) a low initial population density of P. thornei in the soil profile to 90 cm depth and (b) a high initial population of P. thornei to 45 cm depth, and a medium level of the crown rot fungus, Fusarium pseudograminearum, at 0–15 cm depth to a low level. For a range of wheat and durum cultivars, grain yield and response to fumigation were highly significantly (p < 0.001) related to (a) the P. thornei tolerance index of the cultivars in the third experiment, and (b) to both the P. thornei tolerance index and the crown rot resistance index in the fourth experiment. In the latter, grain yield was significantly (p < 0.001) positively related to biomass at anthesis and negatively related to percentage whiteheads at grain fill growth stage. One barley cultivar was more tolerant to both diseases than the wheat and durum cultivars. Crop rotation, utilizing crop cultivars resistant and tolerant to both P. thornei and F. pseudograminearum, is key to success for conservation farming in this region.


1967 ◽  
Vol 10 (3) ◽  
pp. 289-294 ◽  
Author(s):  
Adrian M. Srb ◽  
Howard Jarolmen

Results of crosses of a large number of Neurosporas of different origin, including several distinct strains of N. sitophila, were utilized to re-examine the question of whether certain wild-type Neurosporas other than N. crassa show biases in the two types of second-division segregation. Segregations for alleles of the mating type and peak loci on a wide variety of genetic backgrounds gave little evidence for excess either of symmetrical or asymmetrical ‘post-reduction’ asci.


Plant Disease ◽  
2017 ◽  
Vol 101 (10) ◽  
pp. 1788-1794 ◽  
Author(s):  
Noel L. Knight ◽  
Bethany Macdonald ◽  
Mark W. Sutherland

Fusarium crown rot is a significant disease of durum wheat (Triticum turgidum L. var. durum), which exhibits high levels of disease susceptibility. The most extreme symptom of crown rot is a prematurely senescing culm that typically fails to set grain. Individual crown rot-affected durum wheat plants displaying both nonsenescent and prematurely senescent culms were harvested to compare visual discoloration, Fusarium pseudograminearum biomass, and vascular colonization in culm sections sampled at three different heights above the crown. Field samples of EGA Bellaroi were collected at Wellcamp, QLD, in 2011, 2012, 2013, and 2014, and of Hyperno at Narrabri, NSW, in 2014. Prematurely senescent culms exhibited greater visual discoloration, F. pseudograminearum biomass, and vascular colonization than nonsenescent culms in each year they were examined. The extent of these differences varied between environments and timing of collection in each year. Vascular colonization initially occurred in xylem vessels and spread into phloem tissues as disease severity increased. The increased presence of hyphae in vascular bundles of prematurely senescing culms provides strong evidence for the hypothesis that restriction of water and nutrient movement in a diseased culm is a key factor in crown rot severity.


1975 ◽  
Vol 17 (3) ◽  
pp. 441-449 ◽  
Author(s):  
A. M. DeLange ◽  
A. J. F. Griffiths

In Neurospora crassa, strains of opposite mating type generally do not form stable heterokaryons because the mating type locus acts as a heterokaryon incompatibility locus. However, when one A and one a strain, having complementing auxotrophic mutants, are placed together on minimal medium, growth may occur, although the growth is generally slow. In this study, escape from such slow growth to that at a wild type or near-wild type rate was observed. The escaped cultures are stable heterokaryons, mostly having lost the mating type allele function from one component nucleus, so that the nuclear types are heterokaryon compatible. Either A or a mating type can be lost. This loss of function has been attributed to deletion since only one nuclear type could be recovered in all heterokaryons except one, but deletion spanning adjacent loci has been directly demonstrated in a minority of cases. Alternatively when one component strain is tol and the other tol+ (tol being a recessive mutant suppressing the heterokaryon incompatibility associated with mating type), escape may occur by the deletion or mutation of tol+, also resulting in heterokaryon compatibility. An induction mechanism for escape is speculated upon.


Author(s):  
Mohammed Khudhair ◽  
F. Obanor ◽  
K. Kazan ◽  
D. M. Gardiner ◽  
E. Aitken ◽  
...  

2010 ◽  
Vol 121 (5) ◽  
pp. 941-950 ◽  
Author(s):  
Hao Bing Li ◽  
Guo Qiang Xie ◽  
Jun Ma ◽  
Gui Ru Liu ◽  
Shu Min Wen ◽  
...  

Genetics ◽  
2001 ◽  
Vol 158 (3) ◽  
pp. 1027-1036 ◽  
Author(s):  
Cletus A D'Souza ◽  
Bee Na Lee ◽  
Thomas H Adams

Abstract We showed previously that a ΔfluG mutation results in a block in Aspergillus nidulans asexual sporulation and that overexpression of fluG activates sporulation in liquid-submerged culture, a condition that does not normally support sporulation of wild-type strains. Here we demonstrate that the entire N-terminal region of FluG (∼400 amino acids) can be deleted without affecting sporulation, indicating that FluG activity resides in the C-terminal half of the protein, which bears significant similarity with GSI-type glutamine synthetases. While FluG has no apparent role in glutamine biosynthesis, we propose that it has an enzymatic role in sporulation factor production. We also describe the isolation of dominant suppressors of ΔfluG(dsg) that should identify components acting downstream of FluG and thereby define the function of FluG in sporulation. The dsgA1 mutation also suppresses the developmental defects resulting from ΔflbA and dominant activating fadA mutations, which both cause constitutive induction of the mycelial proliferation pathway. However, dsgA1 does not suppress the negative influence of these mutations on production of the aflatoxin precursor, sterigmatocystin, indicating that dsgA1 is specific for asexual development. Taken together, our studies define dsgA as a novel component of the asexual sporulation pathway.


Sign in / Sign up

Export Citation Format

Share Document