scholarly journals UMIc: A Preprocessing Method for UMI Deduplication and Reads Correction

2021 ◽  
Vol 12 ◽  
Author(s):  
Maria Tsagiopoulou ◽  
Maria Christina Maniou ◽  
Nikolaos Pechlivanis ◽  
Anastasis Togkousidis ◽  
Michaela Kotrová ◽  
...  

A recent refinement in high-throughput sequencing involves the incorporation of unique molecular identifiers (UMIs), which are random oligonucleotide barcodes, on the library preparation steps. A UMI adds a unique identity to different DNA/RNA input molecules through polymerase chain reaction (PCR) amplification, thus reducing bias of this step. Here, we propose an alignment free framework serving as a preprocessing step of fastq files, called UMIc, for deduplication and correction of reads building consensus sequences from each UMI. Our approach takes into account the frequency and the Phred quality of nucleotides and the distances between the UMIs and the actual sequences. We have tested the tool using different scenarios of UMI-tagged library data, having in mind the aspect of a wide application. UMIc is an open-source tool implemented in R and is freely available from https://github.com/BiodataAnalysisGroup/UMIc.

2017 ◽  
Vol 23 (1) ◽  
Author(s):  
N.NANDHA KUMAR ◽  
K. SOURIANATHA SUNDARAM ◽  
D. SUDHAKAR ◽  
K.K. KUMAR

Excessive presence of polysaccharides, polyphenol and secondary metabolites in banana plant affects the quality of DNA and it leads to difficult in isolating good quality of DNA. An optimized modified CTAB protocol for the isolation of high quality and quantity of DNA obtained from banana leaf tissues has been developed. In this protocol a slight increased salt (NaCl) concentration (2.0M) was used in the extraction buffer. Polyvinylpyrrolidone (PVP) and Octanol were used for the removal of polyphenols and polymerase chain reaction (PCR) inhibitors. Proteins like various enzymes were degraded by Proteinase K and removed by centrifugation from plant extract during the isolation process resulting in pure genomic DNA, ready to use in downstream applications including PCR, quantitative polymerase chain reaction (qPCR), ligation, restriction and sequencing. This protocol yielded a high molecular weight DNA isolated from polyphenols rich leaves of Musa spp which was free from contamination and colour. The average yields of total DNA from leaf ranged from 917.4 to 1860.9 ng/ìL. This modified CTAB protocol reported here is less time consuming 4-5h, reproducible and can be used for a broad spectrum of plant species which have polyphenol and polysaccharide compounds.


2021 ◽  
Vol 11 (4) ◽  
pp. 1943
Author(s):  
Joo-Young Kim ◽  
Ju Yeon Jung ◽  
Da-Hye Kim ◽  
Seohyun Moon ◽  
Won-Hae Lee ◽  
...  

Analytical techniques such as DNA profiling are widely used in various fields, including forensic science, and novel technologies such as direct polymerase chain reaction (PCR) amplification are continuously being developed in order to acquire DNA profiles efficiently. However, non-specific amplification may occur depending on the quality of the crime scene evidence and amplification methods employed. In particular, the ski-slope effect observed in direct PCR amplification has led to inaccurate interpretations of the DNA profile results. In this study, we aimed to reduce the ski-slope effect by using dimethyl sulfoxide (DMSO) in direct PCR. We confirmed that DMSO (3.75%, v/v) increased the amplification yield of large-sized DNA sequences more than that of small-sized ones. Using 50 Korean buccal samples, we further demonstrated that DMSO reduced the ski-slope effect in direct PCR. These results suggest that the experimental method developed in this study is suitable for direct PCR and may help to successfully obtain DNA profiles from various types of evidence at crime scenes.


1996 ◽  
Vol 44 (10) ◽  
pp. 1205-1207 ◽  
Author(s):  
A Dakhama ◽  
V Macek ◽  
J C Hogg ◽  
R G Hegele

The polymerase chain reaction (PCR) is a powerful method that allows enzymatic amplification of rate target nucleic acid sequences. It has been applied to the amplification of viral genomes from paraffin-embedded pathology specimens. However, interpretation of negative results requires amplification of a housekeeping gene such as beta-actin. In the present study we used specific oligonucleotide primers previously designed to amplify both the genomic DNA and the mRNA transcript from paraffin-embedded tissue. These products have predicted sizes of 250 BP and 154 BP, respectively, but our results showed that PCR amplification only (without reverse transcription) unexpectedly generated the 154-BP product. Further investigation of the nature of this product demonstrated that it originated from the amplification of DNA, not RNA. We conclude that the 154-BP product generated by these primers cannot be exclusively considered as beta-actin RNA product and should not be used to assess successful extraction of RNA, to ascertain its integrity, or to normalize for the total amount of RNA assayed by RT-PCR from paraffin-embedded tissue.


2011 ◽  
Vol 27 (3) ◽  
pp. 357-364
Author(s):  
B. T. Chia ◽  
S.-A. Yang ◽  
M.-Y. Cheng ◽  
C.-W. Lin ◽  
Y.-J. Yang

ABSTRACTIn this paper, the development of a portable polymerase chain reaction (PCR) device is presented. Integrating electromagnetic mini-actuators for bi-directional fluid transport, the proposed device, whose dimension is 67mm × 66mm × 25mm, can be fully operated with a 5V DC voltage. The device consists of four major parts: A disposable channel chip in which PCR mixture is manipulated and reacted, a heater chip which generates different temperature zones for PCR reaction, a linear actuator array for pumping PCR mixture, and a circuit module for controlling and driving the system. The advantages of the device include the rapid temperature responses associated with continuous-flow-type PCR devices, as well as the programmable thermal cycling associated with chamber-type PCR devices. The thermal characteristics are measured and discussed. PCR amplification is successfully performed for the 122 bp segment of MCF-7/adr cell line. Due to its small footprint, this self-contained system potentially can be employed for point-of-care (POC) applications.


2001 ◽  
Vol 64 (2) ◽  
pp. 164-167 ◽  
Author(s):  
G. TANTILLO ◽  
A. DI PINTO ◽  
A. VERGARA ◽  
C. BUONAVOGLIA

A polymerase chain reaction test was developed to detect Brucella spp. directly in milk and cheese and optimized using primers for the BSCP-31 gene. A total of 46 cheese samples produced with sheep and goats milk were assayed, and Brucella spp. was detected in 46% of them, especially in cheese made from sheep milk. This method is of remarkable epidemiologic interest because it is an indirect test indicating the sanitary quality of milk used in dairy industries. The method showed good sensitivity and specificity. It is faster and less expensive than the conventional bacteriological assays.


2012 ◽  
Vol 49 (2) ◽  
pp. 67-70 ◽  
Author(s):  
M. Kolesárová ◽  
R. Herich ◽  
M. Levkut ◽  
J. Čurlík ◽  
M. Levkut

AbstractPCR amplification of specific DNA regions is a powerful tool for retrospective studies, but not all preservation or fixation methods render DNA that is suitable for subsequent amplification. Several factors affect sensitivity of polymerase chain reaction (PCR) amplification. There were reported the effects of commonly used fixation solutions — 10 % neutral buffered formalin, 20 % neutral buffered formalin and Carnoy’s solution and the efficiency of PCR amplification in fresh tissue and paraffin (or wax) embedded samples of Cysticercus ovis. DNA from samples was isolated and PCR product of 1300 bp was amplified. Results indicated that the samples fixed in Carnoy’s solution produced reliable amplification of desired fragments. The samples that were fixed in 10 % and 20 % neutral buffered formalin brought negative results.


2004 ◽  
Vol 46 (4) ◽  
pp. 183-187 ◽  
Author(s):  
Silvia Maria Di Santi ◽  
Karin Kirchgatter ◽  
Karen Cristina Sant'Anna Brunialti ◽  
Alessandra Mota Oliveira ◽  
Sergio Roberto Santos Ferreira ◽  
...  

Although the Giemsa-stained thick blood smear (GTS) remains the gold standard for the diagnosis of malaria, molecular methods are more sensitive and specific to detect parasites and can be used at reference centers to evaluate the performance of microscopy. The description of the Plasmodium falciparum, P. vivax, P. malariae and P. ovale ssrRNA gene sequences allowed the development of a polymerase chain reaction (PCR) that had been used to differentiate the four species. The objective of this study was to determine Plasmodium species through PCR in 190 positive smears from patients in order to verify the quality of diagnosis at SUCEN's Malaria Laboratory. Considering only the 131 positive results in both techniques, GTS detected 4.6% of mixed and 3.1% of P. malariae infections whereas PCR identified 19.1% and 13.8%, respectively.


Sign in / Sign up

Export Citation Format

Share Document