scholarly journals Melatonin Regulates the Periodic Growth of Cashmere by Upregulating the Expression of Wnt10b and β-catenin in Inner Mongolia Cashmere Goats

2021 ◽  
Vol 12 ◽  
Author(s):  
Junyang Liu ◽  
Qing Mu ◽  
Zhihong Liu ◽  
Yan Wang ◽  
Jiasen Liu ◽  
...  

Secondary hair follicle growth in cashmere goats has seasonal cycle changes, and melatonin (MT) has a regulatory effect on the cashmere growth cycle. In this study, the growth length of cashmere was measured by implanting MT in live cashmere goats. The results indicated that the continuous implantation of MT promoted cashmere to enter the anagen 2 months earlier and induce secondary hair follicle development. HE staining of skin tissues showed that the number of secondary hair follicles in the MT-implanted goats was significantly higher than that in the control goats (P < 0.05). Transcriptome sequencing of the skin tissue of cashmere goats was used to identify differentially expressed genes: 532 in February, 641 in October, and 305 in December. Fluorescence quantitative PCR and Western blotting results showed that MT had a significant effect on the expression of Wnt10b, β-catenin, and proteins in the skin tissue of Inner Mongolia cashmere goats. This finding suggested that MT alters the cycle of secondary hair follicle development by changing the expression of related genes. This research lays the foundation for further study on the mechanism by which MT regulates cashmere growth.

PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0243507
Author(s):  
Zhihong Wu ◽  
Erhan Hai ◽  
Zhengyang Di ◽  
Rong Ma ◽  
Fangzheng Shang ◽  
...  

Objective Mature hair follicles represent an important stage of hair follicle development, which determines the stability of hair follicle structure and its ability to enter the hair cycle. Here, we used weighted gene co-expression network analysis (WGCNA) to identify hub genes of mature skin and hair follicles in Inner Mongolian cashmere goats. Methods We used transcriptome sequencing data for the skin of Inner Mongolian cashmere goats from fetal days 45–135 days, and divided the co expressed genes into different modules by WGCNA. Characteristic values were used to screen out modules that were highly expressed in mature skin follicles. Module hub genes were then selected based on the correlation coefficients between the gene and module eigenvalue, gene connectivity, and Gene Ontology (GO)/Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. The results were confirmed by quantitative polymerase chain reaction (qPCR). Results Ten modules were successfully defined, of which one, with a total of 3166 genes, was selected as a specific module through sample and gene expression pattern analyses. A total of 584 candidate hub genes in the module were screened by the correlation coefficients between the genes and module eigenvalue and gene connectivity. Finally, GO/KEGG functional enrichment analyses detected WNT10A as a key gene in the development and maturation of skin hair follicles in fetal Inner Mongolian cashmere goats. qPCR showed that the expression trends of 13 genes from seven fetal skin samples were consistent with the sequencing results, indicating that the sequencing results were reliable.n


2019 ◽  
Author(s):  
Gongyan Liu ◽  
Shu Li ◽  
Hongli Liu ◽  
Yanli Zhu ◽  
Liya Bai ◽  
...  

Abstract Background: Hair follicles is an appendage from the vertebrate skin epithelium, and arise from the embryonic ectoderm andregenerate cyclically during adult life. Dermal papilla cells (DPCs) is the key dermal component of the hair follicle that directly regulates hair follicle development, growth and regeneration. Recent studies have reported that miRNA plays an important role in regulating hair follicle morphogenesis, proliferation, differentiation and apoptosis of hair follicle stem cells. Results: The miRNAs expression profile of the DPCs from different hair density Rex rabbits shown that 240 differentially expressed of miRNAs were screened (log 2 (HD/LD)|>1.00 and Q-value≤0.001). Among them, the expression of ocu-miR-205-5p in low hair densities DPCs was higher than that in high hair densities, and it is highly expressed in the skin tissue of Rex rabbits ( P <0.05). ocu-miR-205 could increase cell proliferation and cell apoptosis ratio, change cell cycle process ( P <0.05), affect the genes expression of PI3K/Akt, Wnt, Notch and BMP signaling pathways in DPCs and skin tissue of Rex rabbits, inhibit the protein phosphorylation level of CTNNB1, GSK-3β and the protein expression level of noggin (NOG), promote Akt phosphorylation level ( P <0.05). There was no significant change in primary follicle density ( P >0.05), but the secondary follicle density and total follicle density ( P <0.05) were changed after ocu-miR-205-5p interfered expression, and secondary/primary ratio (S/P) in ocu-miR-205-5p interfered expression group increased at 14 days after injection ( P <0.05). Conclusion: ocu-miR-205 could promote the apoptosis of DPCs, affect PI3K/Akt, Wnt, Notch and BMP signaling pathways genes and proteins expression in DPCs and skin of Rex rabbits, promote the transformation of hair follicles from growth phase to regression and resting phase, and affect hair density of Rex rabbits.


2020 ◽  
Author(s):  
Gongyan Liu ◽  
Shu Li ◽  
Hongli Liu ◽  
Yanli Zhu ◽  
Liya Bai ◽  
...  

Abstract Background: Hair follicles is an appendage from the vertebrate skin epithelium, and arise from the embryonic ectoderm andregenerate cyclically during adult life. Dermal papilla cells (DPCs) is the key dermal component of the hair follicle that directly regulates hair follicle development, growth and regeneration. Recent studies have reported that miRNA plays an important role in regulating hair follicle morphogenesis, proliferation, differentiation and apoptosis of hair follicle stem cells. Results: The miRNAs expression profile of the DPCs from different hair density Rex rabbits shown that 240 differentially expressed of miRNAs were screened (log 2 (HD/LD)|>1.00 and Q-value≤0.001). Among them, the expression of ocu-miR-205-5p in low hair densities DPCs was higher than that in high hair densities, and it is highly expressed in the skin tissue of Rex rabbits ( P <0.05). ocu-miR-205 could increase cell proliferation and cell apoptosis ratio, change cell cycle process ( P <0.05), affect the genes expression of PI3K/Akt, Wnt, Notch and BMP signaling pathways in DPCs and skin tissue of Rex rabbits, inhibit the protein phosphorylation level of CTNNB1, GSK-3β and the protein expression level of noggin (NOG), promote Akt phosphorylation level ( P <0.05). There was no significant change in primary follicle density ( P >0.05), but the secondary follicle density and total follicle density ( P <0.05) were changed after ocu-miR-205-5p interfered expression, and secondary/primary ratio (S/P) in ocu-miR-205-5p interfered expression group increased at 14 days after injection ( P <0.05). Conclusion: ocu-miR-205 could promote the apoptosis of DPCs, affect PI3K/Akt, Wnt, Notch and BMP signaling pathways genes and proteins expression in DPCs and skin of Rex rabbits, promote the transformation of hair follicles from growth phase to regression and resting phase, and affect hair density of Rex rabbits.


Animals ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1905
Author(s):  
Meilin Jin ◽  
Jian Lu ◽  
Xiaojuan Fei ◽  
Zengkui Lu ◽  
Kai Quan ◽  
...  

Inner Mongolia and Liaoning cashmere goats in China are well-known for their cashmere quality and yield. Thus, they are great models for identifying genomic regions associated with cashmere traits. Herein, 53 Inner Mongolia cashmere goats, Liaoning cashmere goats and Huanghuai goats were genotyped, and 53,347 single-nucleotide polymorphisms (SNPs) were produced using the Illumina Caprine 50K SNP chip. Additionally, we identified some positively selected SNPs by analyzing Fst and XP-EHH. The top 5% of SNPs had selection signatures. After gene annotation, 222 and 173 candidate genes were identified in Inner Mongolia and Liaoning cashmere goats, respectively. Several genes were related to hair follicle development, such as TRPS1, WDR74, LRRC14, SPTLC3, IGF1R, PADI2, FOXP1, WNT10A and CSN3. Gene enrichment analysis of these cashmere trait-associated genes related 67 enriched signaling pathways that mainly participate in hair follicle development and stem cell pluripotency regulation. Furthermore, we identified 20 overlapping genes that were selected in both cashmere goat breeds. Among these overlapping genes, WNT10A and CSN3, which are associated with hair follicle development, are potentially involved in cashmere production. These findings may improve molecular breeding of cashmere goats in the future.


2020 ◽  
Author(s):  
Gongyan Liu ◽  
Shu Li ◽  
Hongli Liu ◽  
Yanli Zhu ◽  
Liya Bai ◽  
...  

Abstract Background: Hair follicles is an appendage from the vertebrate skin epithelium, and arise from the embryonic ectoderm andregenerate cyclically during adult life. Dermal papilla cells (DPCs) is the key dermal component of the hair follicle that directly regulates hair follicle development, growth and regeneration. Recent studies have reported that miRNA plays an important role in regulating hair follicle morphogenesis, proliferation, differentiation and apoptosis of hair follicle stem cells. Results: The miRNAs expression profile of the DPCs from different hair density Rex rabbits shown that 240 differentially expressed of miRNAs were screened (log 2 (HD/LD)|>1.00 and Q-value≤0.001). Among them, the expression of ocu-miR-205-5p in low hair densities DPCs was higher than that in high hair densities, and it is highly expressed in the skin tissue of Rex rabbits ( P <0.05). ocu-miR-205 could increase cell proliferation and cell apoptosis ratio, change cell cycle process ( P <0.05), affect the genes expression of PI3K/Akt, Wnt, Notch and BMP signaling pathways in DPCs and skin tissue of Rex rabbits, inhibit the protein phosphorylation level of CTNNB1, GSK-3β and the protein expression level of noggin (NOG), promote Akt phosphorylation level ( P <0.05). There was no significant change in primary follicle density ( P >0.05), but the secondary follicle density and total follicle density ( P <0.05) were changed after ocu-miR-205-5p interfered expression, and secondary/primary ratio (S/P) in ocu-miR-205-5p interfered expression group increased at 14 days after injection ( P <0.05). Conclusion: ocu-miR-205 could promote the apoptosis of DPCs, affect PI3K/Akt, Wnt, Notch and BMP signaling pathways genes and proteins expression in DPCs and skin of Rex rabbits, promote the transformation of hair follicles from growth phase to regression and resting phase, and affect hair density of Rex rabbits.


2020 ◽  
Author(s):  
Gongyan Liu ◽  
Shu Li ◽  
Hongli Liu ◽  
Yanli Zhu ◽  
Liya Bai ◽  
...  

Abstract Background: Hair follicles is an appendage from the vertebrate skin epithelium, and arise from the embryonic ectoderm andregenerate cyclically during adult life. Dermal papilla cells (DPCs) is the key dermal component of the hair follicle that directly regulates hair follicle development, growth and regeneration. Recent studies have reported that miRNA plays an important role in regulating hair follicle morphogenesis, proliferation, differentiation and apoptosis of hair follicle stem cells. Results: The miRNAs expression profile of the DPCs from different hair density Rex rabbits shown that 240 differentially expressed of miRNAs were screened (log 2 (HD/LD)|>1.00 and Q-value≤0.001). Among them, the expression of ocu-miR-205-5p in low hair densities DPCs was higher than that in high hair densities, and it is highly expressed in the skin tissue of Rex rabbits ( P <0.05). ocu-miR-205 could increase cell proliferation and cell apoptosis ratio, change cell cycle process ( P <0.05), affect the genes expression of PI3K/Akt, Wnt, Notch and BMP signaling pathways in DPCs and skin tissue of Rex rabbits, inhibit the protein phosphorylation level of CTNNB1, GSK-3β and the protein expression level of noggin (NOG), promote Akt phosphorylation level ( P <0.05). There was no significant change in primary follicle density ( P >0.05), but the secondary follicle density and total follicle density ( P <0.05) were changed after ocu-miR-205-5p interfered expression, and secondary/primary ratio (S/P) in ocu-miR-205-5p interfered expression group increased at 14 days after injection ( P <0.05). Conclusion: ocu-miR-205 could promote the apoptosis of DPCs, affect PI3K/Akt, Wnt, Notch and BMP signaling pathways genes and proteins expression in DPCs and skin of Rex rabbits, promote the transformation of hair follicles from growth phase to regression and resting phase, and affect hair density of Rex rabbits.


2020 ◽  
Author(s):  
Gongyan Liu ◽  
Shu Li ◽  
Hongli Liu ◽  
Yanli Zhu ◽  
Liya Bai ◽  
...  

Abstract Background: Hair follicles is an appendage from the vertebrate skin epithelium, and arise from the embryonic ectoderm andregenerate cyclically during adult life. Dermal papilla cells (DPCs) is the key dermal component of the hair follicle that directly regulates hair follicle development, growth and regeneration. Recent studies have reported that miRNA plays an important role in regulating hair follicle morphogenesis, proliferation, differentiation and apoptosis of hair follicle stem cells. Results: The miRNAs expression profile of the DPCs from different hair density Rex rabbits shown that 240 differentially expressed of miRNAs were screened (log 2 (HD/LD)|>1.00 and Q-value≤0.001). Among them, the expression of ocu-miR-205-5p in low hair densities DPCs was higher than that in high hair densities, and it is highly expressed in the skin tissue of Rex rabbits ( P <0.05). ocu-miR-205 could increase cell proliferation and cell apoptosis ratio, change cell cycle process ( P <0.05), affect the genes expression of PI3K/Akt, Wnt, Notch and BMP signaling pathways in DPCs and skin tissue of Rex rabbits, inhibit the protein phosphorylation level of CTNNB1, GSK-3β and the protein expression level of noggin (NOG), promote Akt phosphorylation level ( P <0.05). There was no significant change in primary follicle density ( P >0.05), but the secondary follicle density and total follicle density ( P <0.05) were changed after ocu-miR-205-5p interfered expression, and secondary/primary ratio (S/P) in ocu-miR-205-5p interfered expression group increased at 14 days after injection ( P <0.05). Conclusion: ocu-miR-205 could promote the apoptosis of DPCs, affect PI3K/Akt, Wnt, Notch and BMP signaling pathways genes and proteins expression in DPCs and skin of Rex rabbits, promote the transformation of hair follicles from growth phase to regression and resting phase, and affect hair density of Rex rabbits.


2019 ◽  
Author(s):  
Mei Jin ◽  
Qin Feng Zhao ◽  
Ping Ni ◽  
Jun Piao ◽  
Ai Jing Piao

Abstract Abstract : (Background)Liaoning cashmere goat cashmere has high economic value FGF5 is an important factor regulating its growth. The role of long non-coding RNA (LncRNA) in the mammalian villus growth cycle has still not been studied in detail.(Results)This study investigated how LncRNA mediates the effects of FGF5 on the growth of Liaoning cashmere goats. We screened for LncRNA related to hair follicle development and villus growth by RNA-seq sequencing. GO and pathway analysis determined that the optimal treatment conditions for FGF5 drugs are 10 -4 g/L for 72h (F4_72h). The expression levels of CBS, CTH, keratin gene K26, KAP11.1 were studied when overexpressing and interfering with LncRNA. (Conclusions)To our knowledge, this is the first study on how LncRNA regulates villi growth by regulating target genes and keratin genes in the amino acid metabolic pathway; it is also the first to open a new research direction for studying the mechanism of FGF5 in regulating hair follicle development and villus growth.


2020 ◽  
Author(s):  
Gongyan Liu ◽  
Shu Li ◽  
Hongli Liu ◽  
Yanli Zhu ◽  
Liya Bai ◽  
...  

Abstract Background: Hair follicles is an appendage from the vertebrate skin epithelium, and arise from the embryonic ectoderm andregenerate cyclically during adult life. Dermal papilla cells (DPCs) is the key dermal component of the hair follicle that directly regulates hair follicle development, growth and regeneration. Recent studies have reported that miRNA plays an important role in regulating hair follicle morphogenesis, proliferation, differentiation and apoptosis of hair follicle stem cells. Results: The miRNAs expression profile of the DPCs from different hair density Rex rabbits shown that 240 differentially expressed of miRNAs were screened (log 2 (HD/LD)|>1.00 and Q-value≤0.001). Among them, the expression of ocu-miR-205-5p in low hair densities DPCs was higher than that in high hair densities, and it is highly expressed in the skin tissue of Rex rabbits ( P <0.05). ocu-miR-205 could increase cell proliferation and cell apoptosis ratio, change cell cycle process ( P <0.05), affect the genes expression of PI3K/Akt, Wnt, Notch and BMP signaling pathways in DPCs and skin tissue of Rex rabbits, inhibit the protein phosphorylation level of CTNNB1, GSK-3β and the protein expression level of noggin (NOG), promote Akt phosphorylation level ( P <0.05). There was no significant change in primary follicle density ( P >0.05), but the secondary follicle density and total follicle density ( P <0.05) were changed after ocu-miR-205-5p interfered expression, and secondary/primary ratio (S/P) in ocu-miR-205-5p interfered expression group increased at 14 days after injection ( P <0.05). Conclusion: ocu-miR-205 could promote the apoptosis of DPCs, affect PI3K/Akt, Wnt, Notch and BMP signaling pathways genes and proteins expression in DPCs and skin of Rex rabbits, promote the transformation of hair follicles from growth phase to regression and resting phase, and affect hair density of Rex rabbits.


Author(s):  
Erhan Hai ◽  
Wenjing Han ◽  
Zhihong Wu ◽  
Rong Ma ◽  
Fangzheng Shang ◽  
...  

Abstract Background MicroRNAs (miRNAs), a class of 22 nucleotide (nt) non-coding RNAs, negatively regulate mRNA post-transcriptional modification in various biological processes. Initiation of skin hair follicles in cashmere goats is a dynamic process involving many key signalling molecules, but the associated cellular biological mechanisms induced by these key signalling molecules have not been reported. Results In this study, differential expression, bioinformatics, and Gene Ontology (GO)/Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed on miRNA expression profiles of Inner Mongolian cashmere goats at 45, 55, and 65 days during the foetal period, and chi-miR-370-3p was identified and investigated further. Real-time fluorescence quantification (qRT-PCR), dual luciferase reporting, and western blotting results showed that transforming growth factor beta receptor 2 (TGF-βR2) and fibroblast growth factor receptor 2 (FGFR2) were the target genes of chi-miR-370-3p. Chi-miR-370-3p also regulated the expression of TGF-βR2 and FGFR2 at mRNA and protein levels in epithelial cells and dermal fibroblasts. DNA staining, Cell Counting Kit-8 (CCK8), and fluorescein-labelled Annexin V results showed that chi-miR-370-3p inhibited the proliferation of epithelial cells and fibroblasts, but had no effect on apoptosis. Cell scratch test results showed that chi-miR-370-3p promoted the migration of epithelial cells and fibroblasts. Conclusion Chi-miR-370-3p inhibits the proliferation of epithelial cells and fibroblasts by targeting TGF-βR2 and FGFR2, thereby improving cell migration ability, and ultimately regulating the fate of epithelial cells and dermal fibroblasts to develop the placode (PC) and dermal condensate (DC), inducing hair follicle development.


Sign in / Sign up

Export Citation Format

Share Document