scholarly journals Screening and Identification of LncRNAs Related to Villus Growth of Liaoning Cashmere Goats and Their Effects on Growth after FGF5 Treatment

2019 ◽  
Author(s):  
Mei Jin ◽  
Qin Feng Zhao ◽  
Ping Ni ◽  
Jun Piao ◽  
Ai Jing Piao

Abstract Abstract : (Background)Liaoning cashmere goat cashmere has high economic value FGF5 is an important factor regulating its growth. The role of long non-coding RNA (LncRNA) in the mammalian villus growth cycle has still not been studied in detail.(Results)This study investigated how LncRNA mediates the effects of FGF5 on the growth of Liaoning cashmere goats. We screened for LncRNA related to hair follicle development and villus growth by RNA-seq sequencing. GO and pathway analysis determined that the optimal treatment conditions for FGF5 drugs are 10 -4 g/L for 72h (F4_72h). The expression levels of CBS, CTH, keratin gene K26, KAP11.1 were studied when overexpressing and interfering with LncRNA. (Conclusions)To our knowledge, this is the first study on how LncRNA regulates villi growth by regulating target genes and keratin genes in the amino acid metabolic pathway; it is also the first to open a new research direction for studying the mechanism of FGF5 in regulating hair follicle development and villus growth.

2021 ◽  
Vol 12 ◽  
Author(s):  
Junyang Liu ◽  
Qing Mu ◽  
Zhihong Liu ◽  
Yan Wang ◽  
Jiasen Liu ◽  
...  

Secondary hair follicle growth in cashmere goats has seasonal cycle changes, and melatonin (MT) has a regulatory effect on the cashmere growth cycle. In this study, the growth length of cashmere was measured by implanting MT in live cashmere goats. The results indicated that the continuous implantation of MT promoted cashmere to enter the anagen 2 months earlier and induce secondary hair follicle development. HE staining of skin tissues showed that the number of secondary hair follicles in the MT-implanted goats was significantly higher than that in the control goats (P < 0.05). Transcriptome sequencing of the skin tissue of cashmere goats was used to identify differentially expressed genes: 532 in February, 641 in October, and 305 in December. Fluorescence quantitative PCR and Western blotting results showed that MT had a significant effect on the expression of Wnt10b, β-catenin, and proteins in the skin tissue of Inner Mongolia cashmere goats. This finding suggested that MT alters the cycle of secondary hair follicle development by changing the expression of related genes. This research lays the foundation for further study on the mechanism by which MT regulates cashmere growth.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7167 ◽  
Author(s):  
Bo Zhai ◽  
Lichun Zhang ◽  
Chunxin Wang ◽  
Zhuo Zhao ◽  
Mingxin Zhang ◽  
...  

Aim The target molecule regulatory function of microRNA-21 (miR-21) in multiple signalling pathways has become a main focus of genetic and pharmacological regulatory studies of various diseases. The identification of target genes for miRNA-21 in the development of hair follicles can provide new research pathways for the regulation of cell development. Methods In the present study, eight six-month-old ewes from Super Merino (SM) and Small Tailed Han (STH) sheep breeds were selected. Target prediction and dual-luciferase wild-type and mutant vectors were used to identify the target genes of miR-21. Quantitative reverse transcription polymerase chain reaction (RT-qPCR) and bioinformatics analysis were conducted to analyze the effects of miR-21. Results The results show that the expressions of CNKSR2, KLF3 and TNPO1 were downregulated by miRNA-21 at rates of 36%, 26% and 48%, respectively. Moreover, there was a significant negative correlation between the expression of miR-21 and the three target genes in sheep with two extreme phenotypes. The expression of microRNA-21in October was significantly lower than that in January and February; while the expression of CNKSR2, KLF3 and TNPO1 in October was higher than that in January and February. Conclusions: These results suggest that CNKSR2, KLF3 and TNPO1 are three newly discovered target genes of miR-21 and might be involved in the effects of miR-21 on hair follicle development.


PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0243507
Author(s):  
Zhihong Wu ◽  
Erhan Hai ◽  
Zhengyang Di ◽  
Rong Ma ◽  
Fangzheng Shang ◽  
...  

Objective Mature hair follicles represent an important stage of hair follicle development, which determines the stability of hair follicle structure and its ability to enter the hair cycle. Here, we used weighted gene co-expression network analysis (WGCNA) to identify hub genes of mature skin and hair follicles in Inner Mongolian cashmere goats. Methods We used transcriptome sequencing data for the skin of Inner Mongolian cashmere goats from fetal days 45–135 days, and divided the co expressed genes into different modules by WGCNA. Characteristic values were used to screen out modules that were highly expressed in mature skin follicles. Module hub genes were then selected based on the correlation coefficients between the gene and module eigenvalue, gene connectivity, and Gene Ontology (GO)/Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. The results were confirmed by quantitative polymerase chain reaction (qPCR). Results Ten modules were successfully defined, of which one, with a total of 3166 genes, was selected as a specific module through sample and gene expression pattern analyses. A total of 584 candidate hub genes in the module were screened by the correlation coefficients between the genes and module eigenvalue and gene connectivity. Finally, GO/KEGG functional enrichment analyses detected WNT10A as a key gene in the development and maturation of skin hair follicles in fetal Inner Mongolian cashmere goats. qPCR showed that the expression trends of 13 genes from seven fetal skin samples were consistent with the sequencing results, indicating that the sequencing results were reliable.n


2020 ◽  
Author(s):  
Mei Jin ◽  
Qin Feng Zhao ◽  
Ping Ni ◽  
Jun Piao ◽  
Ai Jing Piao

Abstract (Background)Liaoning cashmere goat cashmere has high economic value FGF5 is an important factor regulating its growth. The role of long non-coding RNA (LncRNA) in the mammalian villus growth cycle has still not been studied in detail.(Results)This study investigated how LncRNA mediates the effects of FGF5 on the growth of Liaoning cashmere goats. By using RNA-seq sequencing technology, over-expression and interference lentiviral technology and qPCR, we demonstrated that treatment of skin cells with FGF5 inhibited the expression of LncRNA in cells, down-regulated the expression of the target genes CBS and CTH, and promoted the expression of related keratin genes k26, kap11.1. Then, overexpressing LncRNA in skin cells reversed the inhibiting effect of FGF5 on the target genes CBS and CTH which further inhibited the expression of k26, kap11.1. Finally, we demonstrated the inhibition of CBS and CTH and elevation k26 and kap11.1 genes when the expression level of LncRNA gene is downregulated using RNA interference. (Conclusions)Therefore, we believe that FGF5 can regulate the growth and development of cashmere goat hair by promoting the expression of related keratin and keratin-associated protein genes. This mechanism is achieved by inhibiting the expression of the LncRNA gene and then down-regulating the expression of the target genes CBS and CTH.


2020 ◽  
Vol 63 (2) ◽  
pp. 461-470
Author(s):  
Zhihong Wu ◽  
Yu Wang ◽  
Wenjing Han ◽  
Kun Yang ◽  
Erhan Hai ◽  
...  

Abstract. This study is focused on the detection of ectodysplasin A (EDA) and ectodysplasin A receptor (EDAR) mRNA expression levels and protein positions in seven stages of cashmere goat fetus development (45, 55, 65, 75 95, 115, and 135 d), with the main goal of investigating the effect of EDA and EDAR on genes related to hair follicle development. Quantitative real-time polymerase chain reaction (RT-qPCR) was used to measure EDA and EDAR expression levels in seven stages of cashmere goat fetus development. Immunohistochemistry (IHC) was used to locate EDA and EDAR in the critical stage of fetal hair follicle development (45–135 d). EDA and EDAR expression in fetal fibroblasts and epithelial cells was interfered with by short hairpin RNA (sh-RNA). The results indicated that EDA and EDAR were both expressed in the skin tissue in the seven cashmere goat embryo stages. Moreover, EDA and EDAR play an important role in the formation of embryonic placode (Pc). After interfering with EDA and EDAR, the expression of BMP2, BMP4, noggin, β-catenin, TGF-β2, Wnt-10b, and NOTCH1 in fibroblasts and epithelial cells changed significantly. This study provides a theoretical and experimental basis for further studying the molecular regulation mechanism of hair follicle development.


Animals ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1905
Author(s):  
Meilin Jin ◽  
Jian Lu ◽  
Xiaojuan Fei ◽  
Zengkui Lu ◽  
Kai Quan ◽  
...  

Inner Mongolia and Liaoning cashmere goats in China are well-known for their cashmere quality and yield. Thus, they are great models for identifying genomic regions associated with cashmere traits. Herein, 53 Inner Mongolia cashmere goats, Liaoning cashmere goats and Huanghuai goats were genotyped, and 53,347 single-nucleotide polymorphisms (SNPs) were produced using the Illumina Caprine 50K SNP chip. Additionally, we identified some positively selected SNPs by analyzing Fst and XP-EHH. The top 5% of SNPs had selection signatures. After gene annotation, 222 and 173 candidate genes were identified in Inner Mongolia and Liaoning cashmere goats, respectively. Several genes were related to hair follicle development, such as TRPS1, WDR74, LRRC14, SPTLC3, IGF1R, PADI2, FOXP1, WNT10A and CSN3. Gene enrichment analysis of these cashmere trait-associated genes related 67 enriched signaling pathways that mainly participate in hair follicle development and stem cell pluripotency regulation. Furthermore, we identified 20 overlapping genes that were selected in both cashmere goat breeds. Among these overlapping genes, WNT10A and CSN3, which are associated with hair follicle development, are potentially involved in cashmere production. These findings may improve molecular breeding of cashmere goats in the future.


2020 ◽  
Author(s):  
Mei Jin ◽  
Qin Feng Zhao ◽  
Ping Ni ◽  
Jun Piao ◽  
Ai Jing Piao

Abstract (Background)Liaoning Cashmere Goat cashmere has high economic value FGF5 is an important factor regulating its growth. The role of long non-coding RNA (LncRNA) in the mammalian villus growth cycle has still not been studied in detail.(Results)We demonstrated that treatment of skin cells with FGF5 inhibited the expression of LncRNA in cells, down-regulated the expression of the target genes CBS and CTH, and promoted the expression of related keratin genes k26, kap11.1. Overexpressing LncRNA reversed the inhibiting effect of FGF5 on the target genes CBS and CTH. (Conclusions)we believe that FGF5 can regulate the growth and development of Cashmere Goat hair by promoting the expression of related keratin and keratin-associated protein genes. This mechanism is achieved by inhibiting the expression of the LncRNA gene and then down-regulating the expression of the target genes CBS and CTH.


Sign in / Sign up

Export Citation Format

Share Document