scholarly journals Organelle Genome Variation in the Red Algal Genus Ahnfeltia (Florideophyceae)

2021 ◽  
Vol 12 ◽  
Author(s):  
Hocheol Kim ◽  
Ji Hyun Yang ◽  
Danilo E. Bustamante ◽  
Martha S. Calderon ◽  
Andres Mansilla ◽  
...  

The agarophyte Ahnfeltia (Ahnfeltiales, Rhodophyta) is a globally widespread genus with 11 accepted species names. Two of the most widespread species in this genus, A. plicata and A. fastigiata, may have diverged genetically due to past geographic changes and subsequent geographic isolation. To investigate this genomic and genetic diversity, we generated new plastid (ptDNAs) and mitochondrial genomes (mtDNAs) of these Ahnfeltia species from four different regions (A. plicata - Chile and UK and A. fastigiata - Korea and Oregon). Two architecture variations were found in the Ahnfeltia genomes: in ptDNA of A. fastigiata Oregon, the hypothetical pseudogene region was translocated, likely due to recombination with palindromic repeats or a gene transfer from a red algal plasmid. In mtDNA of A. fastigiata Korea, the composition of the group II intronic ORFs was distinct from others suggesting different scenarios of gain and loss of group II intronic ORFs. These features resulted in genome size differences between the two species. Overall gene contents of organelle genomes of Ahnfeltia were conserved. Phylogenetic analysis using concatenated genes from ptDNAs and mtDNAs supported the monophyly of the Ahnfeltiophycidae. The most probable individual gene trees showed that the Ahnfeltia populations were genetically diversified. These trees, the cox1 haplotype network, and a dN/dS analysis all supported the theory that these Ahnfeltia populations have diversified genetically in accordance with geographic distribution.

2021 ◽  
Author(s):  
◽  
Maren Preuss

<p>Red algal parasites have evolved independently over a 100 times and grow only on other red algal hosts. Most parasites are closely related to their host based on the similarity of their reproductive structures. Secondary pit connections between red algal parasites and their hosts are used to transfer parasite organelles and nuclei into host cells. Morphological and physiological changes in infected host cells have been observed in some species. Parasite mitochondrial genomes are similar in size and gene content to free-living red algae whereas parasite plastids are highly reduced. Overall, red algal parasites are poorly studied and thus the aim of this study was to increase the general knowledge of parasitic taxa with respect to their diversity, evolutionary origin, development, physiology, and organelle evolution. Investigation of the primary literature showed that most species descriptions of red algal parasites were poor and did not meet the criteria for defining a parasitic relationship. This literature study also revealed a lack of knowledge of many key parasitic processes including early parasite development, host cell “control”, and parasite origin. Many of these poorly studied research areas were addressed in this thesis. Phylogenetic analyses, using a range of markers from all three genomes (cpDNA: rbcL, nDNA: actin, LSU rRNA; mtDNA: cox1), showed different patterns of phylogenetic relationships for the four new red algal parasites and their hosts. The parasites Phycodrys novae-zelandiophila sp. nov. and Vertebrata aterrimophila sp. nov. closest relative is its host species. Cladhymenia oblongifoliophila sp. nov. closest relative is its host species based on nuclear and mitochondrial markers whereas the plastid markers group the parasite with Cladhymenia lyallii, suggesting that the parasite plastid was acquired when previously parasitizing C. lyallii. Judithia parasitica sp. nov. grows on two Blastophyllis species but the parasites’ closest relative is the non-host species Judithia delicatissima. Developmental studies of the parasite Vertebrata aterrimophila, showed a unique developmental structure (“trunk-like” cell) not known in other parasites, plus localised infection vi and few changes in infected host cells. High-throughput-sequencing revealed mitochondrial genomes of similar size, gene content and order in the parasite Pterocladiophila hemisphaerica to its host Pterocladia lucida, and a reduced non-photosynthetic plastid in the parasite. Mitochondrial (mt) and plastid (cp) genome phylogenies placed Pterocladiophila hemisphaerica on long branches, either as sister to Ceramiales (mt) or Gracilariales (cp). Further analyses, filtering non-elevated plastid genes grouped the parasite neither with the Gracilariales (mt) or Gelidiales (cp) on shorter branches but without support. Nuclear phylogeny grouped P. hemisphaerica as sister to the Gelidiales and other red algal orders and was the only phylogenetic relationship with support. Investigations of photosystem II capacity using PAM fluorometry, and quantifying chlorophyll a content in three pigmented parasites, showed different host nutrient dependencies. Rhodophyllis parasitica and Vertebrata aterrimophila are not able to photosynthesize and are fully dependent on host nutrients. Pterocladiophila hemisphaerica is able to photosynthesize independently, even though it has a reduced non-photosynthetic plastid genome, and therefore is only partially dependent on its host. This study advances our current understanding of red algal parasites and highlights many possibilities for future research including genome evolution and understanding parasite diversity.</p>


2019 ◽  
Vol 116 (6) ◽  
pp. 2187-2192 ◽  
Author(s):  
Gareth Bloomfield ◽  
Peggy Paschke ◽  
Marina Okamoto ◽  
Tim J. Stevens ◽  
Hideko Urushihara

Sex promotes the recombination and reassortment of genetic material and is prevalent across eukaryotes, although our knowledge of the molecular details of sexual inheritance is scant in several major lineages. In social amoebae, sex involves a promiscuous mixing of cytoplasm before zygotes consume the majority of cells, but for technical reasons, sexual progeny have been difficult to obtain and study. We report here genome-wide characterization of meiotic progeny inDictyostelium discoideum. We find that recombination occurs at high frequency in pairwise crosses between all three mating types, despite the absence of the Spo11 enzyme that is normally required to initiate crossover formation. Fusions of more than two gametes to form transient syncytia lead to frequent triparental inheritance, with haploid meiotic progeny bearing recombined nuclear haplotypes from two parents and the mitochondrial genome from a third. Cells that do not contribute genetically to theDictyosteliumzygote nucleus thereby have a stake in the next haploid generation.D. discoideummitochondrial genomes are polymorphic, and our findings raise the possibility that some of this variation might be a result of sexual selection on genes that can promote the spread of individual organelle genomes during sex. This kind of self-interested mitochondrial behavior may have had important consequences during eukaryogenesis and the initial evolution of sex.


Phycologia ◽  
1984 ◽  
Vol 23 (2) ◽  
pp. 135-145 ◽  
Author(s):  
Alan J. K. Millar ◽  
Gerald T. Kraft
Keyword(s):  

Genome ◽  
2012 ◽  
Vol 55 (1) ◽  
pp. 75-79 ◽  
Author(s):  
Hiroyo Kagami ◽  
Hironori Nagano ◽  
Yoshiya Takahashi ◽  
Tetsuo Mikami ◽  
Tomohiko Kubo

Introns may be considered as optional because they are removed from mRNA molecules, but introns are fairly preserved for unknown reasons. Previously, the mitochondrial rps3 gene of sugar beet ( Beta vulgaris L., Caryophyllales) was shown to represent a unique example of an intron loss. We have determined the distribution of the rps3 intron in 19 Caryophyllalean species. The intron was absent from the Amaranthaceae and the Achatocarpaceae. In the Caryophyllaceae, Dianthus japonicus rps3 was pseudogenized, but the intronic sequence was retained. Intact intron-bearing rps3 copies were cloned from Portulaca grandiflora and Myrtillocactus geometrizans , members of the sister clade of the Amaranthaceae–Achatocarpaceae–Caryophyllaceae clade. Most of the C-to-U RNA-editing sites in P. grandiflora and M. geometrizans rps3 transcripts were homologous in the two species, as well as in the sugar beet rps3, which, unlike the other 12 rps3 transcripts, lacks editing in the exonic regions around the intron. Provided that the loss of editing preceded the loss of rps3 intron, it appears conceivable that a requirement for editing could have prevented the loss of group II introns retained in angiosperm mitochondrial genomes. This interpretation is an alternative to the conventional one that views the loss of editing as a mere trace of RNA-mediated gene conversion.


2009 ◽  
Vol 364 (1527) ◽  
pp. 2229-2239 ◽  
Author(s):  
Gregory P. Fournier ◽  
Jinling Huang ◽  
J. Peter Gogarten

Horizontal gene transfer (HGT) is often considered to be a source of error in phylogenetic reconstruction, causing individual gene trees within an organismal lineage to be incongruent, obfuscating the ‘true’ evolutionary history. However, when identified as such, HGTs between divergent organismal lineages are useful, phylogenetically informative characters that can provide insight into evolutionary history. Here, we discuss several distinct HGT events involving all three domains of life, illustrating the selective advantages that can be conveyed via HGT, and the utility of HGT in aiding phylogenetic reconstruction and in dating the relative sequence of speciation events. We also discuss the role of HGT from extinct lineages, and its impact on our understanding of the evolution of life on Earth. Organismal phylogeny needs to incorporate reticulations; a simple tree does not provide an accurate depiction of the processes that have shaped life's history.


Phytotaxa ◽  
2016 ◽  
Vol 243 (1) ◽  
pp. 54 ◽  
Author(s):  
William E Schmidt ◽  
Carlos Frederico D. Gurgel ◽  
Suzanne L. Fredericq

Gloiosaccion Harvey, with type G. brownii (Rhodymeniaceae, Rhodymeniales), is a red algal genus characterized by the presence of large, hollow and saccate vesicle-shaped thalli arising from small solid axes. Whereas Gloiosaccion has traditionally been viewed as being closely related to Botryocladia (Agardh) Kylin, a multi-marker phylogenetic analysis based on chloroplast-encoded rbcL and UPA and nuclear LSU rDNA sequences instead places Gloiosaccion brownii and G. pumila in the Chrysymenia clade that includes the generitype C. ventricosa (Lamouroux) J. Agardh. Gloiosaccion is reduced to synonymy with Chrysymenia J. Agardh, a taxonomic move first advocated by De Toni in 1900. In addition to C. brownii (Harvey) De Toni, “Gloiosaccion” brownii var. firmum Harvey and “G.” pumilum J. Agardh are recognized as the distinct species Chrysymenia coriacea comb. et stat. nov. and C. pumila (J. Agardh) Weber-van Bosse, respectively. A new species, C. pseudoventricosa sp. nov. is proposed to accommodate specimens going under the name C. ventricosa (J.V. Lamouroux) J. Agardh from the Gulf of Mexico and Caribbean Sea.


Sign in / Sign up

Export Citation Format

Share Document