social amoebae
Recently Published Documents


TOTAL DOCUMENTS

81
(FIVE YEARS 15)

H-INDEX

19
(FIVE YEARS 2)

2022 ◽  
Author(s):  
Hugh Z Ford ◽  
Angelika Manhart ◽  
Jonathan R Chubb

Self-sustaining signalling waves provide a source of information in living systems. A classic example is the rotating spiral waves of cAMP (chemoattractant) release that encode Dictyostelium morphogenesis. These patterns remain poorly characterised due to limitations in tracking the signalling behaviour of individual cells in the context of the whole collective. Here, we have imaged Dictyostelium populations over millimetre length scales and track the emergence, structure, progression and biological effects of cAMP waves by monitoring the signalling states and motion of individual cells. Collective migration coincides with a decrease in the period and speed of waves that stem from an increase in the rotational speed and curvature of spiral waves. The dynamics and structure of spiral waves are generated by the vortex motion of the spiral tip. Spiral tip circulation spatially organises a small group of cells into a ring pattern, which also constrains spiral tip motion. Both the cellular ring and tip path gradually contract over time, resulting in the acceleration of spiral rotation and change in global wave dynamics. Aided by mathematical modelling, we show that this contraction is due to an instability driven by a deflection in cell chemotaxis around the spiral tip cAMP field, resulting in a deformation of the cellular ring pattern towards its centre. That is, vortex contraction modulates the source of information which, upon dissemination (excitable signal relay) and decoding (chemotaxis), triggers morphogenesis. By characterising rotating spiral waves at this level of detail, our results describe a mechanism by which information generated by a self-sustaining signal, and disseminated across the population, is modulated at the organisational source.


Author(s):  
Xuehua Xu ◽  
Miao Pan ◽  
Tian Jin

How phagocytes find invading microorganisms and eliminate pathogenic ones from human bodies is a fundamental question in the study of infectious diseases. About 2.5 billion years ago, eukaryotic unicellular organisms–protozoans–appeared and started to interact with various bacteria. Less than 1 billion years ago, multicellular animals–metazoans–appeared and acquired the ability to distinguish self from non-self and to remove harmful organisms from their bodies. Since then, animals have developed innate immunity in which specialized white-blood cells phagocytes- patrol the body to kill pathogenic bacteria. The social amoebae Dictyostelium discoideum are prototypical phagocytes that chase various bacteria via chemotaxis and consume them as food via phagocytosis. Studies of this genetically amendable organism have revealed evolutionarily conserved mechanisms underlying chemotaxis and phagocytosis and shed light on studies of phagocytes in mammals. In this review, we briefly summarize important studies that contribute to our current understanding of how phagocytes effectively find and kill pathogens via chemotaxis and phagocytosis.


2020 ◽  
Vol 66 (12) ◽  
pp. 679-688
Author(s):  
Alicia F. Durocher ◽  
Cynthia Gagné-Thivierge ◽  
Steve J. Charette

Multilamellar bodies (MLBs), structures composed of concentric membrane layers, are known to be produced by different protozoa, including species of ciliates, free-living amoebae, and Dictyostelium discoideum social amoebae. Initially believed to be metabolic waste, potential roles like cell communication and food storage have been suggested for D. discoideum MLBs, which could be useful for the multicellular development of social amoebae and as a food source. However, among dictyostelids, this phenomenon has only been observed with D. discoideum, and mainly with laboratory strains grown in axenic conditions. It was thought that other social amoebae may also produce MLBs. Four environmental social amoeba isolates were characterized. All strains belong to the Dictyostelium genus, including some likely to be Dictyostelium giganteum. They have distinctive phenotypes comprising their growth rate on Klebsiella aerogenes lawns and the morphology of their fruiting bodies. They all produce MLBs like those produced by a D. discoideum laboratory strain when grown on K. aerogenes lawns, as revealed by analysis using the H36 antibody in epifluorescence microscopy as well as by transmission electron microscopy. Consequently, this study shows that MLBs are produced by various dictyostelid species, which further supports a role for MLBs in the lifestyle of amoebae.


2020 ◽  
Author(s):  
Jonas Kjellin ◽  
Lotta Avesson ◽  
Johan Reimegård ◽  
Zhen Liao ◽  
Ludwig Eichinger ◽  
...  

AbstractBackgroundAggregative multicellularity has evolved multiple times in diverse groups of eukaryotes. One of the most well-studied examples is the development of dictyostelid social amoebae, e.g. Dictyostelium discoideum. However, it is still poorly understood why multicellularity emerged in these amoebae while the great majority of other members of Amoebozoa are unicellular. Previously a novel type of non-coding RNA, Class I RNAs, was identified in D. discoideum and demonstrated to be important for normal multicellular development. In this study we investigated Class I RNA evolution and its connection to multicellular development.ResultsNew Class I RNA genes were identified by constructing a co-variance model combined with a scoring system based on conserved up-stream sequences. Multiple genes were predicted in representatives of each major group of Dictyostelia and expression analysis validated that our search approach can identify expressed Class I RNA genes with high accuracy and sensitivity. Further studies showed that Class I RNAs are ubiquitous in Dictyostelia and share several highly conserved structure and sequence motifs. Class I RNA genes appear to be unique to dictyostelid social amoebae since they could not be identified in searches in outgroup genomes, including the closest known relatives to Dictyostelia.ConclusionOur results show that Class I RNA is an ancient abundant class of ncRNAs, likely to have been present in the last common ancestor of Dictyostelia dating back at least 600 million years. Taken together, our current knowledge of Class I RNAs suggests that they may have been involved in evolution of multicellularity in Dictyostelia.


2020 ◽  
Vol 48 (8) ◽  
pp. 4139-4146 ◽  
Author(s):  
Peter Kundert ◽  
Alejandro Sarrion-Perdigones ◽  
Yezabel Gonzalez ◽  
Mariko Katoh-Kurasawa ◽  
Shigenori Hirose ◽  
...  

Abstract GoldenBraid is a rapid, modular, and robust cloning system used to assemble and combine genetic elements. Dictyostelium amoebae represent an intriguing synthetic biological chassis with tractable applications in development, chemotaxis, bacteria–host interactions, and allorecognition. We present GoldenBraid as a synthetic biological framework for Dictyostelium, including a library of 250 DNA parts and assemblies and a proof-of-concept strain that illustrates cAMP-chemotaxis with four fluorescent reporters coded by one plasmid.


2020 ◽  
Vol 10 (3) ◽  
pp. 1119-1134
Author(s):  
Suegene Noh ◽  
Lauren Christopher ◽  
Joan E. Strassmann ◽  
David C. Queller

Mycotaxon ◽  
2019 ◽  
Vol 134 (3) ◽  
pp. 425-429 ◽  
Author(s):  
Pu Liu ◽  
Shunhang Zhang ◽  
Yue Zou ◽  
Yu Zhang ◽  
Yongjia Li ◽  
...  

Two species of dictyostelids (Dictyostelium aureocephalum and Heterostelium filamentosum) new to China were isolated from samples of forest soils; and a second Chinese record of Coremiostelium polycephalum (previously recorded from Taiwan) was also isolated. Descriptions and illustrations based on these isolates are provided.


2019 ◽  
Vol 5 (7) ◽  
pp. eaav4367 ◽  
Author(s):  
Timothy Farinholt ◽  
Christopher Dinh ◽  
Adam Kuspa

Both animals and amoebae use phagocytosis and DNA-based extracellular traps as anti-bacterial defense mechanisms. Whether, like animals, amoebae also use tissue-level barriers to reduce direct contact with bacteria has remained unclear. We have explored this question in the social amoeba Dictyostelium discoideum, which forms plaques on lawns of bacteria that expand as amoebae divide and bacteria are consumed. We show that CadA, a cell adhesion protein that functions in D. discoideum development, is also a bacterial agglutinin that forms a protective interface at the plaque edge that limits exposure of vegetative amoebae to bacteria. This interface is important for amoebal survival when bacteria-to-amoebae ratios are high, optimizing amoebal feeding behavior, and protecting amoebae from oxidative stress. Lectins also control bacterial access to the gut epithelium of mammals to limit inflammatory processes; thus, this strategy of antibacterial defense is shared across a broad spectrum of eukaryotic taxa.


Sign in / Sign up

Export Citation Format

Share Document