scholarly journals Single-cell RNA Sequencing Reveals Heterogeneity of Cultured Bovine Satellite Cells

2021 ◽  
Vol 12 ◽  
Author(s):  
Pengcheng Lyu ◽  
Yumin Qi ◽  
Zhijian J. Tu ◽  
Honglin Jiang

Skeletal muscle from meat-producing livestock such as cattle is a major source of food for humans. To improve skeletal muscle growth efficiency or quality in cattle, it is necessary to understand the genetic and physiological mechanisms that govern skeletal muscle composition, development, and growth. Satellite cells are the myogenic progenitor cells in postnatal skeletal muscle. In this study we analyzed the composition of bovine satellite cells with single-cell RNA sequencing (scRNA-seq). We isolated satellite cells from a 2-week-old male calf, cultured them in growth medium for a week, and performed scRNA-seq using the 10x Genomics platform. Deep sequencing of two scRNA-seq libraries constructed from cultured bovine satellite cells yielded 860 million reads. Cell calling analyses revealed that these reads were sequenced from 19,096 individual cells. Clustering analyses indicated that these reads represented 15 cell clusters that differed in gene expression profile. Based on the enriched expression of markers of satellite cells (PAX7 and PAX3), markers of myoblasts (MYOD1, MYF5), and markers of differentiated myoblasts or myocytes (MYOG), three clusters were determined to be satellite cells, two clusters myoblasts, and two clusters myocytes. Gene ontology and trajectory inference analyses indicated that cells in these myogenic clusters differed in proliferation rate and differentiation stage. Two of the remaining clusters were enriched with PDGFRA, a marker of fibro-adipogenic (FAP) cells, the progenitor cells for intramuscular fat, and are therefore considered to be FAP cells. Gene ontology analyses indicated active lipogenesis in one of these two clusters. The identity of the remaining six clusters could not be defined. Overall, the results of this study support the hypothesis that bovine satellite cells are composed of subpopulations that differ in transcriptional and myogenic state. The results of this study also support the hypothesis that intramuscular fat in cattle originates from fibro-adipogenic cells.

BMC Genomics ◽  
2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Jinghui Li ◽  
Siyuan Xing ◽  
Guiping Zhao ◽  
Maiqing Zheng ◽  
Xinting Yang ◽  
...  

Abstract Background The development of skeletal muscle is closely related to the efficiency of meat production and meat quality. Chicken skeletal muscle development depends on myogenesis and adipogenesis and occurs in two phases—hyperplasia and hypertrophy. However, cell profiles corresponding to the two-phase muscle development have yet to be determined. Single-cell RNA-sequencing (scRNA-seq) can elucidate the cell subpopulations in tissue and capture the gene expression of individual cells, which can provide new insights into the myogenesis and intramuscular adipogenesis. Results Ten cell clusters at the post-hatching developmental stage at Day 5 and seven cell clusters at the late developmental stage at Day 100 were identified in chicken breast muscles by scRNA-seq. Five myocyte-related clusters and two adipocyte clusters were identified at Day 5, and one myocyte cluster and one adipocyte cluster were identified at Day 100. The pattern of cell clustering varied between the two stages. The cell clusters showed clear boundaries at the terminal differentiation stage at Day 100; by contrast, cell differentiation was not complete at Day 5. APOA1 and COL1A1 were selected from up-regulated genes in the adipocyte cluster and found to be co-expressed with the ADIPOQ adipocyte marker gene in breast muscles by RNA in situ hybridization. Conclusions This study is the first to describe the heterogeneity of chicken skeletal muscle at two developmental stages. The genes APOA1 and COL1A1 were identified as biomarkers for chicken intramuscular fat cells.


Cells ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 1045 ◽  
Author(s):  
Kai Qiu ◽  
Doudou Xu ◽  
Liqi Wang ◽  
Xin Zhang ◽  
Ning Jiao ◽  
...  

This study is aimed at exploring the mechanism underlying the homeostasis between myogenesis and adipogenesis in skeletal muscle using a special porcine model with a distinct phenotype on muscle growth rate and intramuscular fat deposition. Differentiation potential of muscle-derived Myo-lineage cells of lean-type pigs was significantly enhanced relative to obese-type pigs, while that of their Adi-lineage cells was similar. Single-cell RNA sequencing revealed that lean-type pigs reserved a higher proportion of Myo-lineage cells in skeletal muscle relative to obese-type pigs. Besides, Myo-lineage cells of the lean-type pig settled closer to the original stage of muscle-derived progenitor cells. Proteomics analysis found that differentially expressed proteins between two sources of Myo-lineage cells are mainly involved in muscle development, cell proliferation and differentiation, ion homeostasis, apoptosis, and the MAPK signaling pathway. The regulation of intracellular ion homeostasis, Ca2+ in particular, significantly differed between two sources of Myo-lineage cells. Ca2+ concentration in both cytoplasm and endoplasmic reticulum was lower in Myo-lineage cells of lean-type pigs relative to obese-type pigs. In conclusion, a higher proportion and stronger differentiation capacity of Myo-lineage cells are the main causes for the higher capability of myogenic differentiation and lower intramuscular fat deposition. Relative low concentration of cellular Ca2+ is advantageous for Myo-lineage cells to keep a potent differentiation potential.


Glia ◽  
2020 ◽  
Vol 68 (6) ◽  
pp. 1291-1303 ◽  
Author(s):  
Kelly Perlman ◽  
Charles P. Couturier ◽  
Moein Yaqubi ◽  
Arnaud Tanti ◽  
Qiao‐Ling Cui ◽  
...  

2015 ◽  
Vol 117 (suppl_1) ◽  
Author(s):  
Bryan D Maliken ◽  
Onur Kanisicak ◽  
Jeffery D Molkentin

A subset of adult cardiac resident cells defined by the stem cell factor tyrosine kinase receptor termed c-kit, are believed to have myogenic potential and are now being delivered via intracoronary infusion to presumably promote cardiac regeneration and improve ventricular function after ischemic cardiac injury. However, recent studies have shown that despite these benefits, c-kit+ progenitor cells in the adult murine heart are more inclined to take on an endothelial rather than cardiomyocyte lineage. To better define the factors involved in early differentiation of these resident cardiac progenitor cells and to distinguish distinct cell subpopulations, we performed single cell RNA sequencing on c-kit+ cells from Kit-Cre lineage traced GFP reporter mice versus total mesenchymal cells from the heart that were CD31- and CD45-. Cells were isolated by cardiac digestion and FACS was performed, positively sorting for the c-kit+ lineage while negatively sorting for CD31 and CD45 to eliminate endothelial and leukocyte progenitor contamination, respectively. Following this isolation, cells were examined to determine GFP reporter status and then submitted for single cell RNA sequencing using the Fluidigm A1 system. Clustering of 654 genes from this data identified 6 distinct subpopulations indicating various stages of early differentiation among CD31- and CD45-negative cardiac interstitial cells. Furthermore, comparison of GFP+ c-kit cells to the total non-GFP mesenchymal cells identified 75 differentially expressed transcripts. These unique gene signatures may help parse the genes that underlie cellular plasticity in the heart and define the best molecular lineages for transdifferentiation into cardiac myocytes.


2021 ◽  
Author(s):  
Kayt Scott ◽  
Rebecca O’Rourke ◽  
Caitlin C. Winkler ◽  
Christina A. Kearns ◽  
Bruce Appel

AbstractVentral spinal cord progenitor cells, which express the basic helix loop helix transcription factor Olig2, sequentially produce motor neurons and oligodendrocyte precursor cells (OPCs). Following specification some OPCs differentiate as myelinating oligodendrocytes while others persist as OPCs. Though a considerable amount of work has described the molecular profiles that define motor neurons, OPCs, and oligodendrocytes, less is known about the progenitors that produce them. To identify the developmental origins and transcriptional profiles of motor neurons and OPCs, we performed single-cell RNA sequencing on isolated pMN cells from embryonic zebrafish trunk tissue at stages that encompassed motor neurogenesis, OPC specification, and initiation of oligodendrocyte differentiation. Downstream analyses revealed two distinct pMN progenitor populations: one that appears to produce neurons and one that appears to produce OPCs. This latter population, called Pre-OPCs, is marked by expression of GS Homeobox 2 (gsx2), a gene that encodes a homeobox transcription factor. Using fluorescent in situ hybridizations, we identified gsx2-expressing Pre-OPCs in the spinal cord prior to expression of canonical OPC marker genes. Our data therefore reveal heterogeneous gene expression profiles among pMN progenitors, supporting prior fate mapping evidence.HighlightsSingle-cell RNA sequencing reveals the developmental trajectories of neurons and glia that arise from spinal cord pMN progenitor cells in zebrafish embryosTranscriptionally distinct subpopulations of pMN progenitors are the apparent sources of neurons or oligodendrocytes, consistent with fate mapping datagsx2 expression marks pMN progenitors that produce oligodendrocyte lineage cells


2017 ◽  
Author(s):  
Isabelle Stévant ◽  
Yasmine Neirjinck ◽  
Christelle Borel ◽  
Jessica Escoffier ◽  
Lee B. Smith ◽  
...  

SummaryThe gonad is a unique biological system for studying cell fate decisions. However, major questions remain regarding the identity of somatic progenitor cells and the transcriptional events driving cell differentiation. Using time course single cell RNA sequencing on XY mouse gonads during sex determination, we identified a single population of somatic progenitor cells prior sex determination. A subset of these progenitors differentiate into Sertoli cells, a process characterized by a highly dynamic genetic program consisting of sequential waves of gene expression. Another subset of multipotent cells maintains their progenitor state but undergo significant transcriptional changes that restrict their competence towards a steroidogenic fate required for the differentiation of fetal Leydig cells. These results question the dogma of the existence of two distinct somatic cell lineages at the onset of sex determination and propose a new model of lineage specification from a unique progenitor cell population.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 4997-4997
Author(s):  
Xin Zhao ◽  
Shouguo Gao ◽  
Sachiko Kajigaya ◽  
Qingguo Liu ◽  
Zhijie Wu ◽  
...  

Hematopoiesis, especially the early events of blood cell formation, has been mainly studied in bulk populations of cells and using progenitor colony formation assays; the familiar hierarchy of cell lineage differentiation and maturation, and associated regulatory factors have been inferred from these methods. However, these techniques often require extensive manipulation of cells, the exposure of cells to unphysiological conditions, aggregation of heterogeneous populations, and prior assumptions concerning cell function and gene expression. New single cell methodology avoids many of these potential experimental deficiencies. Here we have applied single-cell RNA-sequencing(scRNA-seq)to fresh human bone marrow CD34+cells: we profiled 391 single hematopoietic stem/progenitor cells (HSPCs) from four healthy donors by deep sequencing of individual cell transcriptomes. An average of 4560 protein-coding genes were detected per cell. Cells clustered into six distinct groups, which could be assigned to known HSPC subpopulations (Fig 1A), based on expression of lineage-specific genes. Lin-CD34+CD38+cells emerged as locally clustered cell populations (Clusters 2-6, including MEP, GMP, ETP and ProB), while Lin-CD34+CD38-cells formed a single cluster (HSC/MLP). Reconstruction of differentiation trajectories by transcription in single cells revealed four committed lineages derived from stem cell compartment. The earliest fate split separates MEPs from MLPs, which partition further into lymphoid, and granulocyte-monocyte progenitors (Fig 1B). The overall pattern differs from the classical hematopoietic model describing a single binary split between myeloid and lymphoid differentiation immediately downstream of multipotent cells. However, our data align well to recently published scRNA-seq data showing sequential commitment of stem cells to the lymphoid, erythroid/megakaryocytic, and finally myeloid lineages (Setty M, Nat Biotechnol2019; Pellin D, Nat Commun2019). We further examined trends in gene expression in each of the branches and found dynamic expression changes underlying cell fate during early lineage differentiation (Fig 1C). As confirmation, PCA plot of published single-cell assay for transposase-accessible chromatin (scATAC-seq) shows similar differentiation pattern. After projecting scATAC-seq data to our transcriptomic clusters' specific genes, MEP-dependent and myeloid/lymphoid-dependent genes were located on opposing sides of the PC1 with same direction (Fig 1D), indicating transcriptome and epigenome work on differentiation in concerted effort. scRNA-seq provides opportunities for discovery and characterization at the molecular levels of early HSC differentiation and developmental intermediates, retrospectively, without the need to isolate purified populations. However, information inferred from scRNA-seq may be obscured due to missing reads and limited cell numbers. More cells would provide greater detail and higher resolution mapping.Given the low frequency of megakaryocyte progenitors within the CD34+cells as well as the neglected Lin-CD34-BM compartment, we could not fully resolve the separation and maturation of all lineages. Nonetheless, we found good coverage of cell types and a similar HSPC Atlas as other published studies (Velten L, Nat Cell Biol2017; Pellin D, Nat Commun2019)despite our limited numbers of starting cells. Our data accurately reflect the pattern of normal hematopoiesis, which may help to revise and refine characterization of hematopoiesis and provide a general reference framework to investigate the complexities of blood cell production at single-cell resolution - especially when cell numbers are limited, as from patient samples and in marrow failure syndromes. Fig. 1scRNA-seq of human hematopoietic stem and progenitor cells. (A) Unsupervised hierarchical clustering of gene expression data for all cells. C1, HSC/MLP; C2, MEP; C3, GMP; C4, ProB; C5-C6, ETP. (B)Visualization of the HSPC continuum. Each ball represents one cell.(C) Large-scale shifts in gene expression during development of hematopoietic cells.Bars on top indicate locations of individual cells, colored by stages of development, along this developmental trajectory. (D) Projections of five transcriptomic gene modules onto PCA of scATAC-seq data (Buenrostro JD,Cell 2018). Each dot represents a transcriptional factor. Figure 1 Disclosures No relevant conflicts of interest to declare.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Emilie Barruet ◽  
Steven M Garcia ◽  
Katharine Striedinger ◽  
Jake Wu ◽  
Solomon Lee ◽  
...  

Although heterogeneity is recognized within the murine satellite cell pool, a comprehensive understanding of distinct subpopulations and their functional relevance in human satellite cells is lacking. We used a combination of single cell RNA sequencing and flow cytometry to identify, distinguish, and physically separate novel subpopulations of human PAX7+ satellite cells (Hu-MuSCs) from normal muscles. We found that, although relatively homogeneous compared to activated satellite cells and committed progenitors, the Hu-MuSC pool contains clusters of transcriptionally distinct cells with consistency across human individuals. New surface marker combinations were enriched in transcriptional subclusters, including a subpopulation of Hu-MuSCs marked by CXCR4/CD29/CD56/CAV1 (CAV1+). In vitro, CAV1+ Hu-MuSCs are morphologically distinct, and characterized by resistance to activation compared to CAV1- Hu-MuSCs. In vivo, CAV1+ Hu-MuSCs demonstrated increased engraftment after transplantation. Our findings provide a comprehensive transcriptional view of normal Hu-MuSCs and describe new heterogeneity, enabling separation of functionally distinct human satellite cell subpopulations.


Sign in / Sign up

Export Citation Format

Share Document