scholarly journals The Effect of Alzheimer’s Disease-Associated Genetic Variants on Longevity

2021 ◽  
Vol 12 ◽  
Author(s):  
Niccolò Tesi ◽  
Marc Hulsman ◽  
Sven J. van der Lee ◽  
Iris E. Jansen ◽  
Najada Stringa ◽  
...  

Human longevity is influenced by the genetic risk of age-related diseases. As Alzheimer’s disease (AD) represents a common condition at old age, an interplay between genetic factors affecting AD and longevity is expected. We explored this interplay by studying the prevalence of AD-associated single-nucleotide-polymorphisms (SNPs) in cognitively healthy centenarians, and replicated findings in a parental-longevity GWAS. We found that 28/38 SNPs that increased AD-risk also associated with lower odds of longevity. For each SNP, we express the imbalance between AD- and longevity-risk as an effect-size distribution. Based on these distributions, we grouped the SNPs in three groups: 17 SNPs increased AD-risk more than they decreased longevity-risk, and were enriched for β-amyloid metabolism and immune signaling; 11 variants reported a larger longevity-effect compared to their AD-effect, were enriched for endocytosis/immune-signaling, and were previously associated with other age-related diseases. Unexpectedly, 10 variants associated with an increased risk of AD and higher odds of longevity. Altogether, we show that different AD-associated SNPs have different effects on longevity, including SNPs that may confer general neuro-protective functions against AD and other age-related diseases.

2021 ◽  
Author(s):  
Niccolò Tesi ◽  
Marc Hulsman ◽  
Sven J. van der Lee ◽  
Iris E. Jansen ◽  
Najada Stringa ◽  
...  

AbstractThe genetics underlying human longevity is influenced by the genetic risk to develop -or escape- age-related diseases. As Alzheimer’s disease (AD) represents one of the most common conditions at old age, an interplay between genetic factors for AD and longevity is expected.We explored this interplay by studying the prevalence of 38 AD-associated single-nucleotide-polymorphisms (SNPs) identified in AD-GWAS, in self-reported cognitively healthy centenarians, and we replicated findings in the largest GWAS on parental-longevity.We found that 28/38 SNPs identified to associate with increased AD-risk also associated with decreased odds of longevity. For each SNP, we express the imbalance between AD- and longevity-risk as an effect-size distribution. When grouping the SNPs based on these distributions, we found three groups: 17 variants increased AD-risk more than they decreased the risk of longevity (AD-group): these variants were functionally enriched for β-amyloid metabolism and immune signaling, and they were enriched in microglia. 11 variants reported a larger effect on longevity as compared to their AD-effect (Longevity-group): these variants were enriched for endocytosis/immune signaling, and at the cell-type level were enriched in microglia and endothelial cells. Next to AD, these variants were previously associated with other aging-related diseases, including cardiovascular and autoimmune diseases, and cancer. Unexpectedly, 10 variants associated with an increased risk of both AD and longevity (Unexpected-group). The effect of the SNPs in AD- and Longevity-groups replicated in the largest GWAS on parental-longevity, while the effects on longevity of the SNPs in the Unexpected-group could not be replicated, suggesting that these effects may not be robust across different studies.Our study shows that some AD-associated variants negatively affect longevity primarily by their increased risk of AD, while other variants negatively affect longevity through an increased risk of multiple age-related diseases, including AD.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Joseph H. Lee ◽  
Susan Gurney ◽  
Deborah Pang ◽  
Alexis Temkin ◽  
Naeun Park ◽  
...  

Background/Aims. Genetic variants that affect estrogen activity may influence the risk of Alzheimer's disease (AD). In women with Down syndrome, we examined the relation of polymorphisms in hydroxysteroid-17beta-dehydrogenase (HSD17B1) to age at onset and risk of AD.HSD17B1encodes the enzyme 17β-hydroxysteroid dehydrogenase (HSD1), which catalyzes the conversion of estrone to estradiol.Methods. Two hundred and thirty-eight women with DS, nondemented at baseline, 31–78 years of age, were followed at 14–18-month intervals for 4.5 years. Women were genotyped for 5 haplotype-tagging single-nucleotide polymorphisms (SNPs) in theHSD17B1gene region, and their association with incident AD was examined.Results. Age at onset was earlier, and risk of AD was elevated from two- to threefold among women homozygous for the minor allele at 3 SNPs in intron 4 (rs676387), exon 6 (rs605059), and exon 4 inCOASY(rs598126). Carriers of the haplotype TCC, based on the risk alleles for these three SNPs, had an almost twofold increased risk of developing AD (hazard ratio = 1.8, 95% CI, 1.1–3.1).Conclusion. These findings support experimental and clinical studies of the neuroprotective role of estrogen.


2019 ◽  
Vol 9 (10) ◽  
pp. 262 ◽  
Author(s):  
Hayden

Type 2 diabetes mellitus (T2DM) and late-onset Alzheimer’s disease–dementia (LOAD) are increasing in global prevalence and current predictions indicate they will only increase over the coming decades. These increases may be a result of the concurrent increases of obesity and aging. T2DM is associated with cognitive impairments and metabolic factors, which increase the cellular vulnerability to develop an increased risk of age-related LOAD. This review addresses possible mechanisms due to obesity, aging, multiple intersections between T2DM and LOAD and mechanisms for the continuum of progression. Multiple ultrastructural images in female diabetic db/db models are utilized to demonstrate marked cellular remodeling changes of mural and glia cells and provide for the discussion of functional changes in T2DM. Throughout this review multiple endeavors to demonstrate how T2DM increases the vulnerability of the brain’s neurovascular unit (NVU), neuroglia and neurons are presented. Five major intersecting links are considered: i. Aging (chronic age-related diseases); ii. metabolic (hyperglycemia advanced glycation end products and its receptor (AGE/RAGE) interactions and hyperinsulinemia-insulin resistance (a linking linchpin); iii. oxidative stress (reactive oxygen–nitrogen species); iv. inflammation (peripheral macrophage and central brain microglia); v. vascular (macrovascular accelerated atherosclerosis—vascular stiffening and microvascular NVU/neuroglial remodeling) with resulting impaired cerebral blood flow.


2021 ◽  
Vol 13 ◽  
Author(s):  
Angelica Giuliani ◽  
Simona Gaetani ◽  
Giulia Sorgentoni ◽  
Silvia Agarbati ◽  
Maristella Laggetta ◽  
...  

Alzheimer’s disease (AD), the most prevalent neurodegenerative disease in the growing population of elderly people, is still lacking minimally-invasive circulating biomarkers that could facilitate the diagnosis and the monitoring of disease progression. MicroRNAs (miRNAs) are emerging as tissue-specific and/or circulating biomarkers of several age-related diseases, but evidence on AD is still not conclusive. Since a systemic pro-inflammatory status was associated with an increased risk of AD development and progression, we focused our investigation on a subset of miRNAs modulating the inflammatory process, namely inflamma-miRNAs. The expression of inflamma-miR-17-5p, -21-5p, -126-3p, and -146a-5p was analyzed in plasma samples from 116 patients with AD compared with 41 age-matched healthy control (HC) subjects. MiR-17-5p, miR-21-5p, and miR-126-3p plasma levels were significantly increased in AD patients compared to HC. Importantly, a strong inverse relationship was observed between miR-21-5p and miR-126-3p, and the cognitive impairment, assessed by Mini-Mental State Examination (MMSE). Notably, miR-126-3p was able to discriminate between mild and severe cognitive impairment. Overall, our results reinforce the hypothesis that circulating inflamma-miRNAs could be assessed as minimally invasive tools associated with the development and progression of cognitive impairment in AD.


2018 ◽  
Author(s):  
Antonio Boza-Serrano ◽  
Rocío Ruiz ◽  
Raquel Sanchez-Varo ◽  
Yiyi Yang ◽  
Juan García-Revilla ◽  
...  

ABSTRACTAlzheimer’s disease (AD) is a progressive neurodegenerative disease in which the formation of extracellular aggregates of amyloid beta (Aβ) peptide, intraneuronal tau neurofibrillary tangles and microglial activation are major pathological hallmarks. One of the key molecules involved in microglial activation is galectin-3 (gal3), and we demonstrate here for the first time a key role of gal3 in AD pathology. Gal3 was highly upregulated in the brains of AD patients and 5xFAD (familial Alzheimer’s disease) mice, and found specifically expressed in microglia associated with Aβ plaques. Single nucleotide polymorphisms in the LGALS3 gene, which encodes gal3, were associated to an increased risk of AD. Gal3 deletion in 5xFAD mice attenuated microglia-associated immune responses, particularly those associated with TLR and TREM2/DAP12 signaling. In vitro data demonstrated the requirement of gal3 to fully activate microglia in response to fibrillar Aβ. Gal3 deletion decreased the Aβ burden in 5xFAD mice and improved cognitive behavior. Electron microscopy of gal3 in AD mice demonstrated i) a preferential expression of gal3 by plaque-associated microglia, ii) its presence in the extracellular space and iii) its association to Aβ plaques. Low concentrations (1 nM) of pure gal3 promoted cross-seeding fibrilization of pure Aβ. Importantly, a single intrahippocampal injection of gal3 along with Aβ monomers in WT mice was sufficient to induce the formation of insoluble Aβ aggregates that were absent when gal3 was lacking. High-resolution microscopy (STORM) demonstrated close co-localization of gal3 and TREM2 in microglial processes, and a direct interaction was shown by a fluorescence anisotropy assay involving the gal3 CRD domain. Furthermore, gal3 stimulated the TREM2-DAP12 signaling pathway. In conclusion, we provide evidence that gal3 is a central regulator of microglial immune response in AD. It drives proinflammatory activation and Aβ aggregation, as well as acting as an endogenous ligand to TREM2, a key receptor driving microglial response under disease conditions. Gal3 inhibition may, hence, be a potential pharmacological approach to counteract AD.


PLoS ONE ◽  
2021 ◽  
Vol 16 (5) ◽  
pp. e0250440
Author(s):  
Li-Yen Wen ◽  
Lei Wan ◽  
Jung-Nien Lai ◽  
Chih Sheng Chen ◽  
Jamie Jiin-Yi Chen ◽  
...  

Objective This study aimed to investigate the risk of Alzheimer’s disease among patients with age-related macular degeneration and its association with confounding comorbidities. Method This was a population-based, retrospective cohort study. By accessing data from the National Health Insurance Research Database of Taiwan, we identified 10,578 patients aged 50–100 years who were newly diagnosed with age-related macular degeneration between 2000 and 2012 and 10,578 non- age-related macular degeneration individuals. The comorbidities assessed were osteoporosis, diabetes, cirrhosis, cerebrovascular disease, chronic kidney disease, hypertension, hyperlipidemia, coronary artery disease, and chronic obstructive pulmonary disease. Results Patients with age-related macular degeneration had a 1.23-fold increased risk of their condition advancing to Alzheimer’s disease (aHR = 1.23, 95% CI = 1.04–1.46). The younger patients were diagnosed with age-related macular degeneration, the more likely patients got Alzheimer’s disease (50–64 age group: aHR = 1.97, 95% CI = 1.04–3.73; 65–79 age group: aHR = 1.27, 95% CI = 1.02–1.58; 80–100 age group: aHR = 1.06, 95% CI = 0.78–1.45). In addition, there were significantly higher risks of Alzheimer’s disease for patients with cirrhosis (aHR = 1.50, 95% CI = 1.09–2.06) in the age-related macular degeneration cohort than in the non-age-related macular degeneration cohort. Conclusion Patients with age-related macular degeneration may exhibit a higher risk of Alzheimer’s disease than people without age-related macular degeneration.


Brain ◽  
2021 ◽  
Author(s):  
Naciye Magusali ◽  
Andrew C Graham ◽  
Thomas M Piers ◽  
Pantila Panichnantakul ◽  
Umran Yaman ◽  
...  

Abstract Recently, we reported oligoadenylate synthetase 1 (OAS1) contributed to the risk of Alzheimer’s disease, by its enrichment in transcriptional networks expressed by microglia. However, the function of OAS1 within microglia was not known. Using genotyping from 1313 individuals with sporadic Alzheimer’s disease and 1234 control individuals, we confirm the OAS1 variant, rs1131454, is associated with increased risk for Alzheimer’s disease. The same OAS1 locus has been recently associated with severe coronavirus disease 2019 (COVID-19) outcomes, linking risk for both diseases. The single nucleotide polymorphisms rs1131454(A) and rs4766676(T) are associated with Alzheimer’s disease, and rs10735079(A) and rs6489867(T) are associated with severe COVID-19, where the risk alleles are linked with decreased OAS1 expression. Analysing single-cell RNA-sequencing data of myeloid cells from Alzheimer’s disease and COVID-19 patients, we identify co-expression networks containing interferon (IFN)-responsive genes, including OAS1, which are significantly upregulated with age and both diseases. In human induced pluripotent stem cell-derived microglia with lowered OAS1 expression, we show exaggerated production of TNF-α with IFN-γ stimulation, indicating OAS1 is required to limit the pro-inflammatory response of myeloid cells. Collectively, our data support a link between genetic risk for Alzheimer’s disease and susceptibility to critical illness with COVID-19 centred on OAS1, a finding with potential implications for future treatments of Alzheimer’s disease and COVID-19, and development of biomarkers to track disease progression.


Author(s):  
Melvin Hayden

Type 2 diabetes mellitus (T2DM) and late-onset Alzheimer’s disease-dementia (LOAD) are increasing in global prevalence and current predictions indicate they will only increase over the coming decades. These increases may be a result of the concurrent increases of obesity and aging. T2DM is associated with cognitive impairments associated with metabolic factors and increases the cellular vulnerability to develop the age-related increased risk of LOAD. This review addresses possible mechanisms due to obesity, aging, multiple intersections between T2DM and LOAD and mechanisms for the continuum of progression. Multiple ultrastructural images in female diabetic db/db models are utilized to demonstrate marked cellular remodeling changes of mural and glia cells and provide for the discussion of functional changes in T2DM. Throughout this review multiple endeavors to demonstrate how T2DM increases the vulnerability of the brain’s neurovascular unit (NVU), neuroglia and neurons are presented. Five major intersecting links are considered: i. aging (chronic age-related diseases); ii. metabolic (hyperglycemia - advanced glycation end-products and its receptor (AGE/RAGE) interactions and hyperinsulinemia – insulin resistance (a linking linchpin); iii. oxidative stress (reactive oxygen-nitrogen species); iv. inflammation (peripheral macrophage and central brain microglia); v. vascular (macrovascular accelerated atherosclerosis - vascular stiffening and microvascular NVU/neuroglial remodeling) with resulting impaired cerebral blood flow.


Sign in / Sign up

Export Citation Format

Share Document