oxys rats
Recently Published Documents


TOTAL DOCUMENTS

105
(FIVE YEARS 19)

H-INDEX

18
(FIVE YEARS 2)

Biomedicines ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 823
Author(s):  
Ekaterina A. Rudnitskaya ◽  
Tatiana A. Kozlova ◽  
Alena O. Burnyasheva ◽  
Natalia A. Stefanova ◽  
Nataliya G. Kolosova

Sporadic Alzheimer’s disease (AD) is a severe disorder of unknown etiology with no definite time frame of onset. Recent studies suggest that middle age is a critical period for the relevant pathological processes of AD. Nonetheless, sufficient data have accumulated supporting the hypothesis of “neurodevelopmental origin of neurodegenerative disorders”: prerequisites for neurodegeneration may occur during early brain development. Therefore, we investigated the development of the most AD-affected brain structures (hippocampus and prefrontal cortex) using an immunohistochemical approach in senescence-accelerated OXYS rats, which are considered a suitable model of the most common—sporadic—type of AD. We noticed an additional peak of neurogenesis, which coincides in time with the peak of apoptosis in the hippocampus of OXYS rats on postnatal day three. Besides, we showed signs of delayed migration of neurons to the prefrontal cortex as well as disturbances in astrocytic and microglial support of the hippocampus and prefrontal cortex during the first postnatal week. Altogether, our results point to dysmaturation during early development of the brain—especially insufficient glial support—as a possible “first hit” leading to neurodegenerative processes and AD pathology manifestation later in life.


2021 ◽  
Vol 15 (3) ◽  
pp. 292-301
Author(s):  
E. A. Rudnitskaya ◽  
A. O. Burnyasheva ◽  
T. A. Kozlova ◽  
N. A. Muraleva ◽  
D. V. Telegina ◽  
...  

Abstract Alzheimer’s disease (AD) is the most common type of dementia and is currently incurable. After unsuccessful attempts to create drugs targeting the amyloid-β pathway, a search for alternative approaches and treatments targeting nonamyloid AD pathologies is currently underway. One of them is inhibition of striatal-enriched protein tyrosine phosphatase (STEP) activity, which is increased in the prefrontal cortex of AD patients. Here we examined effects of prolonged treatment of OXYS rats which mimic key signs of sporadic AD with a STEP inhibitor, TC-2153, on the progression of signs of AD. TC-2153 had an ambiguous effect on the behavior of the animals: it significantly reduced the already low locomotor and exploratory activities and enhanced anxiety-related behavior in OXYS rats but improved their long-term memory in the Morris water maze. Moreover, TC-2153 had no effect on the accumulation of the amyloid-β protein and on the STEP61 protein level; the latter in the cortex and hippocampus did not differ between OXYS rats and control Wistar rats. These results suggest that the effects of prolonged treatment with TC-2153 may be mediated by mechanisms not related to STEP. In particular, TC-2153 can act as a potential hydrogen sulfide donor and thus substantially affect redox homeostasis.


Antioxidants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1058
Author(s):  
Natalia A. Muraleva ◽  
Nataliya G. Kolosova ◽  
Natalia A. Stefanova

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder and the most common cause of dementia worldwide, with no cure. There is growing interest in mitogen-activated protein kinases (MAPKs) as possible pathogenesis-related therapeutic targets in AD. Previously, using senescence-accelerated OXYS rats, which simulate key characteristics of the sporadic AD type, we have shown that prolonged treatment with mitochondria-targeted antioxidant plastoquinonyl-decyltriphenylphosphonium (SkQ1) during active progression of AD-like pathology improves the activity of many signaling pathways (SPs) including the p38 MAPK SP. In this study, we continued to investigate the mechanisms behind anti-AD effects of SkQ1 in OXYS rats and focused on hippocampal extracellular regulated kinases’ (ERK1 and -2) activity alterations. According to high-throughput RNA sequencing results, SkQ1 eliminated differences in the expression of eight out of nine genes involved in the ERK1/2 SP, compared to untreated control (Wistar) rats. Western blotting and immunofluorescent staining revealed that SkQ1 suppressed ERK1/2 activity via reductions in the phosphorylation of kinases ERK1/2, MEK1, and MEK2. SkQ1 decreased hyperphosphorylation of tau protein, which is present in pathological aggregates in AD. Thus, SkQ1 alleviates AD pathology by suppressing MEK1/2-ERK1/2 SP activity in the OXYS rat hippocampus and may be a promising candidate drug for human AD.


2020 ◽  
Vol 21 (19) ◽  
pp. 6986
Author(s):  
Alena O. Burnyasheva ◽  
Tatiana A. Kozlova ◽  
Natalia A. Stefanova ◽  
Nataliya G. Kolosova ◽  
Ekaterina A. Rudnitskaya

There is a growing body of evidence that interventions like cognitive training or exercises prior to the manifestation of Alzheimer’s disease (AD) symptoms may decelerate cognitive decline. Nonetheless, evidence of prevention or a delay of dementia is still insufficient. Using OXYS rats as a suitable model of sporadic AD and Wistar rats as a control, we examined effects of cognitive training in the Morris water maze on neurogenesis in the dentate gyrus in presymptomatic (young rats) and symptomatic (adult rats) periods of development of AD signs. Four weeks after the cognitive training, we immunohistochemically estimated densities of quiescent and amplifying neuronal progenitors, neuronal-lineage cells (neuroblasts and immature and mature neurons), and astrocytes in young and adult rats, and the amyloid precursor protein and amyloid-β in adult rats. Reference memory was defective in OXYS rats. The cognitive training did not affect neuronal-lineage cells’ density in either rat strain either at the young or adult age, but activated neuronal progenitors in young rats and increased astrocyte density and downregulated amyloid-β in adult OXYS rats. Thus, to activate adult neurogenesis, cognitive training should be started before first neurodegenerative changes, whereas cognitive training accompanying amyloid-β accumulation affects only astrocytic support.


Antioxidants ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 676
Author(s):  
Natalia A. Muraleva ◽  
Natalia A. Stefanova ◽  
Nataliya G. Kolosova

Alzheimer’s disease (AD) is the most common type of dementia and is currently incurable, and mitogen-activated protein kinase (MAPK) p38 is implicated in the pathogenesis of AD. p38 MAPK inhibition is considered a promising strategy against AD, but there are no safe inhibitors capable of penetrating the blood–brain barrier. Earlier, we have shown that mitochondria-targeted antioxidant plastoquinonyl-decyltriphenylphosphonium (SkQ1) at nanomolar concentrations can prevent, slow down, or partially alleviate AD-like pathology in accelerated-senescence OXYS rats. Here we confirmed that dietary supplementation with SkQ1 during active progression of AD-like pathology in OXYS rats (aged 12–18 months) suppresses AD-like pathology progression, and for the first time, we showed that its effects are associated with suppression of p38 MAPK signaling pathway (MAPKsp) activity. Transcriptome analysis, western blotting, and immunofluorescent staining revealed that SkQ1 suppresses p38 MAPKsp activity in the hippocampus at the level of expression of genes involved in the p38 MAPKsp and reduces the phosphorylation of intermediate kinases (p38 MAPK and MK2) and a downstream protein (αB-crystallin). Thus, the anti-AD effects of SkQ1 are associated with improvement in the functioning of relevant signaling pathways and intracellular processes, thus making it a promising therapeutic agent for human AD.


2020 ◽  
Vol 21 (15) ◽  
pp. 5182
Author(s):  
Darya V. Telegina ◽  
Elizabeth A. Kulikova ◽  
Oyuna S. Kozhevnikova ◽  
Alexander V. Kulikov ◽  
Tatyana M. Khomenko ◽  
...  

Tyrosine phosphatase STEP (striatal-enriched tyrosine protein phosphatase) is a brain-specific protein phosphatase and is involved in the pathogenesis of many neurodegenerative diseases. Here, we examined the impact of STEP on the development of age-related macular degeneration (AMD)-like pathology in senescence-accelerated OXYS rats. Using OXYS and Wistar rats (control), we for the first time demonstrated age-dependent changes in Ptpn5 mRNA expression, STEP46 and STEP61 protein levels, and their phosphatase activity in the retina. The increases in STEP protein levels and the decrease of total and STEP phosphatase activities in the retina (as compared with Wistar rats) preceded the manifestation of clinical signs of AMD in OXYS rats (age 20 days). There were no differences in these retinal parameters between 13-month-old Wistar rats and OXYS rats with pronounced signs of AMD. Inhibition of STEP with TC-2153 during progressive AMD-like retinopathy (from 9 to 13 months of age) reduced the thickness of the retinal inner nuclear layer, as evidenced by a decreased amount of parvalbumin-positive amacrine neurons. Prolonged treatment with TC-2153 had no effect on Ptpn5 mRNA expression, STEP46 and STEP61 protein levels, and their phosphatase activity in the OXYS retina. Thus, TC-2153 may negatively affect the retina through mechanisms unrelated to STEP.


2020 ◽  
Vol 50 (6) ◽  
pp. 723-729
Author(s):  
I. N. Rozhkova ◽  
E. Yu. Brusentsev ◽  
T. N. Igonina ◽  
D. S. Ragaeva ◽  
O. M. Petrova ◽  
...  

2020 ◽  
Vol 21 (10) ◽  
pp. 3542 ◽  
Author(s):  
Vasiliy A. Devyatkin ◽  
Olga E. Redina ◽  
Natalia A. Muraleva ◽  
Nataliya G. Kolosova

Aging is a major risk factor of numerous human diseases. Adverse genetic variants may contribute to multiple manifestations of aging and increase the number of comorbid conditions. There is evidence of links between hypertension and age-related diseases, although the genetic relationships are insufficiently studied. Here, we investigated the contribution of hypertension to the development of accelerated-senescence syndrome in OXYS rats. We compared transcriptome sequences of the prefrontal cortex, hippocampus, and retina of OXYS rats with the genotypes of 45 rat strains and substrains (which include models with hypertension) to find single-nucleotide polymorphisms (SNPs) both associated with hypertension and possibly contributing to the development of age-related diseases. A total of 725 polymorphisms were common between OXYS rats and one or more hypertensive rat strains/substrains being analyzed. Multidimensional scaling detected significant similarities between OXYS and ISIAH rat genotypes and significant differences between these strains and the other hypertensive rat strains/substrains. Nonetheless, similar sets of SNPs produce a different phenotype in OXYS and ISIAH rats depending on hypertension severity. We identified 13 SNPs causing nonsynonymous amino-acid substitutions having a deleterious effect on the structure or function of the corresponding proteins and four SNPs leading to functionally significant structural rearrangements of transcripts in OXYS rats. Among them, SNPs in genes Ephx1, Pla2r1, and Ccdc28b were identified as candidates responsible for the concomitant manifestation of hypertension and signs of accelerated aging in OXYS rats.


Sign in / Sign up

Export Citation Format

Share Document