scholarly journals Genome-wide Identification and Evolution of the PP2C Gene Family in Eight Rosaceae Species and Expression Analysis Under Stress in Pyrus bretschneideri

2021 ◽  
Vol 12 ◽  
Author(s):  
Guoming Wang ◽  
Xun Sun ◽  
Zhihua Guo ◽  
Dirk Joldersma ◽  
Lei Guo ◽  
...  

Type 2C protein phosphatase (PP2C) plays an essential role in abscisic acid (ABA) signaling transduction processes. In the current study, we identify 719 putative PP2C genes in eight Rosaceae species, including 118 in Chinese white pear, 110 in European pear, 73 in Japanese apricot, 128 in apple, 74 in peach, 65 in strawberry, 78 in sweet cherry, and 73 in black raspberry. Further, the phylogenetic analysis categorized PbrPP2C genes of Chinese white pear into twelve subgroups based on the phylogenic analysis. We observed that whole-genome duplication (WGD) and dispersed gene duplication (DSD) have expanded the Rosaceae PP2C family despite simultaneous purifying selection. Expression analysis finds that PbrPP2C genes have organ-specific functions. QRT-PCR validation of nine PbrPP2C genes of subgroup A indicates a role in ABA-mediated response to abiotic stress. Finally, we find that five PbrPP2C genes of subgroup A function in the nucleus. In summary, our research suggests that the PP2C family functions to modulate ABA signals and responds to abiotic stress.

2021 ◽  
Vol 12 ◽  
Author(s):  
Liwei Zheng ◽  
Yingli Yang ◽  
Shengjie Ma ◽  
Wenming Wang ◽  
Jimeng Zhang ◽  
...  

Brassinosteroid signaling downstream genes regulate many important agronomic traits in rice. However, information on such genes is limited in Arabidopsis and Rosaceae species. We identified these genes in Arabidopsis and nine Rosaceae species. They were, respectively, named based on chromosomal locations. Segmental duplication and whole-genome duplication under purifying selection, as determined by Ka/Ks analysis, likely contributed to Rosaceae gene expansion. Apple (Malus domestica), Arabidopsis, and rice genes were generally similar, while several Rosaceae genes differed from their rice homologs in various characteristics, such as gene length, subcellular localization, transmembrane topology, conserved domains, secondary structures, and responses to external signals. The brassinosteroid downstream genes in apple were, respectively, induced or repressed by five phytohormones. Furthermore, these apple downstream genes were differentially expressed in different apple grafting combinations (“Nagafu No. 2”/“Malling 9” and “Nagafu No. 2”/“Nagafu No. 2”) and long–short shoot varieties (“Yanfu No. 6” and “Nagafu No. 2”). Responses of the MdBZR genes to diverse stress signals were examined and candidate hub genes were identified. These findings indicated that several brassinosteroid signaling downstream genes in Rosaceae functionally differed from their rice homologs, and certain apple genes may play roles in plant height and stress responses. This study provided valuable information and presented enriched biological theories on brassinosteroid signaling downstream genes in apple. Identification of such genes serve to help expand apple breeding and growth. This study provides useful information for brassinosteroid signaling downstream genes.


Genomics ◽  
2020 ◽  
Vol 112 (5) ◽  
pp. 3484-3496
Author(s):  
Weiwei Zeng ◽  
Xin Qiao ◽  
Qionghou Li ◽  
Chunxin Liu ◽  
Jun Wu ◽  
...  

Plant Gene ◽  
2020 ◽  
Vol 23 ◽  
pp. 100231
Author(s):  
Sumit Kumar Mishra ◽  
Anuj Kumar Poonia ◽  
Reeku Chaudhary ◽  
Vinay K. Baranwal ◽  
Deepanksha Arora ◽  
...  

Trees ◽  
2019 ◽  
Vol 33 (4) ◽  
pp. 987-1002 ◽  
Author(s):  
Zhihua Song ◽  
Lili Niu ◽  
Qing Yang ◽  
Biying Dong ◽  
Litao Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document