scholarly journals Postpartum Depression Is Associated With Altered Neural Connectivity Between Affective and Mentalizing Regions During Mother-Infant Interactions

2021 ◽  
Vol 2 ◽  
Author(s):  
Judith K. Morgan ◽  
Hendrik Santosa ◽  
Rachel M. Fridley ◽  
Kaetlyn K. Conner ◽  
Alison E. Hipwell ◽  
...  

Although there has been growing interest in mood-related neural alterations in women in the initial weeks postpartum, recent work has demonstrated that postpartum depression often lingers for months or years following birth. However, research evaluating the impact of depression on maternal brain function during mother-infant interactions in the late postpartum period is lacking. The current study tested the hypothesis that depressive symptoms at 12-months postpartum are associated with neural alterations in affective and social neural regions, using near-infrared spectroscopy during in vivo mother-infant interactions. Participants were 23 birth mothers of 12-month-old infants (60% boys). While undergoing near-infrared spectroscopy, mothers engaged in an ecologically valid interactive task in which they looked at an age-appropriate book with their infants. Mothers also reported on their depressive symptoms in the past week and were rated on their observed levels of maternal sensitivity during mother-infant play. Greater depressive severity at 12-months postpartum was related to lower connectivity between the right temporoparietal junction and the lateral prefrontal cortex, but greater connectivity between the right temporoparietal junction and anterior medial prefrontal cortex during mother-infant interaction. Given the putative functions of these neural regions within the maternal brain network, our findings suggest that in the context of depression, postpartum mothers' mentalizing about her infants' thoughts and feelings may be related to lower ability to express and regulate her own emotions, but greater ability to engage in emotional bonding with her infant. Future work should explore how connectivity among these regions is associated with longitudinal changes in maternal behavior, especially in the context of changes in mothers' depressive symptoms (e.g., with treatment) over time.

2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Xiang-Yun Ma ◽  
Yong-Jun Wang ◽  
Bo Xu ◽  
Kun Feng ◽  
Gao-Xiang Sun ◽  
...  

Background/Objective. Menopausal depression (MD) is characterized by depressive symptoms along with hormonal fluctuations. We investigate brain function alteration between major depressive disorder (MDD) and MD.Methods. The difference in oxygenated hemoglobin (Oxy-Hb) for the prefrontal cortex (PFC) was compared retrospectively among 90 females presented with 30 MDD, 30 MD, and 30 healthy controls (HCs) using verbal fluency task (VFT) with near-infrared spectroscopy (NIRS).Results. We observed a significant difference in Oxy-Hb alteration in the left dorsolateral PFC (DLPFC) using VFT with NIRS (channel 18,P=0.007) between the MD and MDD groups. A significant difference in Oxy-Hb levels was observed among the three groups in the bilateral DLPFC (channels 18, 27, 33, 39, 41, and 45;P<0.05). Compared to the HCs, the MD group presented lower Oxy-Hb activation in the right DLPFC (channel 41;P=0.048) and the left DLPFC (channels 18, 39, and 45;P<0.05), and the MDD group presented lower Oxy-Hb activation in the right DLPFC (channels 27, 33, and 41;P<0.05) and the left DLPFC (channels 39 and 45;P<0.05).Conclusion. Abnormal hemodynamics of the left DLPFC can differentiate MD from MDD by NIRS.


2019 ◽  
Author(s):  
Takayuki Nakahachi ◽  
Ryouhei Ishii ◽  
Leonides Canuet ◽  
Iori Sato ◽  
Kiyoko Kamibeppu ◽  
...  

Abstract Background: Tetris has recently expanded its place of activity not only to the original entertainment but also to clinical applications such as prevention of trauma flashback. However, to our knowledge, no studies focused on the cortical activation patterns themselves when playing Tetris in a natural form. This study aimed to investigate the activation patterns in the frontal cortex during naturally-performed Tetris for 90 seconds in 24 healthy subjects using functional near-infrared spectroscopy robust to artifacts by motion and electric devices. We also calculated the correlations of behavioral data with cortical activations, and compared the differences in activations between the high and low performers of Tetris. Results: The results demonstrated that significant activations in the frontal cortex during Tetris play had two factors, each showing a similar activation pattern. One of the factors was distributed over the lateral prefrontal cortex bilaterally, and the other was localized to the right prefrontal cortex. Moreover, in the high performers, the activations of the areas centered on the right dorsolateral prefrontal cortex (DLPFC) were estimated to increase and correlations of the activations between those areas and the other areas decrease compared with the low performers. Conclusions: It is suggested that high Tetris performers might reduce functional connectivity between activations of the areas centered on the right DLPFC and the other areas, and increase the local activations compared with low performers. It would be necessary to consider whether its visuospatial cognitive loads stimulate the appropriate areas of the subject’s brain to effectively utilize Tetris play for clinical interventions.


2021 ◽  
Vol 15 ◽  
Author(s):  
Xiaowei Jiang ◽  
Chenghao Zhou ◽  
Na Ao ◽  
Wenke Gu ◽  
Jingyi Li ◽  
...  

Resource scarcity imposes challenging demands on the human cognitive system. Insufficient resources cause the scarcity mindset to affect cognitive performance, while reward enhances cognitive function. Here, we examined how reward and scarcity simultaneously contribute to cognitive performance. Experimental manipulation to induce a polar scarcity mindset and reward conditions within participants under functional near-infrared spectroscopy (fNIRS) recording was implemented to explore the mechanism underlying the scarcity mindset and reward in terms of behavior and neurocognition. Participants showed decreased functional connectivity from the dorsolateral prefrontal cortex (DLPFC) to the ventrolateral prefrontal cortex (VLPFC) with a scarcity mindset, a region often implicated in cognitive control. Moreover, under reward conditions, the brain activation of the maximum total Hb bold signal was mainly located in the left hemisphere [channels 1, 3, and 4, left ventrolateral prefrontal cortex (L-VLPFC) and channel 6, left dorsolateral prefrontal cortex (L-DLPFC)], and there was also significant brain activation of the right dorsolateral prefrontal cortex (R-DLPFC) in the right hemisphere (channel 17). Furthermore, these data indicate the underlying neural changes of the scarcity mentality and demonstrate that brain activities may underlie reward processing. Additionally, the base-tree machine learning model was trained to detect the mechanism of reward function in the prefrontal cortex (PFC). According to SHapley Additive exPlanations (SHAP), channel 8 contributed the most important effect, as well as demonstrating a high-level interrelationship with other channels.


2021 ◽  
Vol 11 (6) ◽  
pp. 701
Author(s):  
Cheng-Hsuan Chen ◽  
Kuo-Kai Shyu ◽  
Cheng-Kai Lu ◽  
Chi-Wen Jao ◽  
Po-Lei Lee

The sense of smell is one of the most important organs in humans, and olfactory imaging can detect signals in the anterior orbital frontal lobe. This study assessed olfactory stimuli using support vector machines (SVMs) with signals from functional near-infrared spectroscopy (fNIRS) data obtained from the prefrontal cortex. These data included odor stimuli and air state, which triggered the hemodynamic response function (HRF), determined from variations in oxyhemoglobin (oxyHb) and deoxyhemoglobin (deoxyHb) levels; photoplethysmography (PPG) of two wavelengths (raw optical red and near-infrared data); and the ratios of data from two optical datasets. We adopted three SVM kernel functions (i.e., linear, quadratic, and cubic) to analyze signals and compare their performance with the HRF and PPG signals. The results revealed that oxyHb yielded the most efficient single-signal data with a quadratic kernel function, and a combination of HRF and PPG signals yielded the most efficient multi-signal data with the cubic function. Our results revealed superior SVM analysis of HRFs for classifying odor and air status using fNIRS data during olfaction in humans. Furthermore, the olfactory stimulation can be accurately classified by using quadratic and cubic kernel functions in SVM, even for an individual participant data set.


2008 ◽  
Vol 57 (4) ◽  
pp. 188-193 ◽  
Author(s):  
Theresa Schreppel ◽  
Johanna Egetemeir ◽  
Martin Schecklmann ◽  
Michael M. Plichta ◽  
Paul Pauli ◽  
...  

Gesture ◽  
2020 ◽  
Vol 19 (2-3) ◽  
pp. 196-222
Author(s):  
Michela Balconi ◽  
Angela Bartolo ◽  
Giulia Fronda

Abstract The interest of neuroscience has been aimed at the investigation of the neural bases underlying gestural communication. This research explored the intra- and inter-brain connectivity between encoder and decoder. Specifically, adopting a “hyperscanning paradigm” with the functional Near-infrared Spectroscopy (fNIRS) cerebral connectivity in oxygenated (O2Hb) and deoxygenated (HHb) hemoglobin levels were revealed during the reproduction of affective, social, and informative gestures of different valence. Results showed an increase of intra- and inter-brain connectivity in dorsolateral prefrontal cortex for affective gestures, in superior frontal gyrus for social gestures and in frontal eyes field for informative gestures. Moreover, encoder showed a higher intra-brain connectivity in posterior parietal areas more than decoder. Finally, an increasing of inter-brain connectivity more than intra-brain (ConIndex) was observed in left regions for positive gestures. The present research has explored how the individuals neural tuning mechanisms turn out to be strongly influenced by the nature of specific gestures.


2021 ◽  
Author(s):  
Yoko Hasegawa ◽  
Ayumi Sakuramoto ◽  
Joe Sakagami ◽  
Masako Shiramizu ◽  
Tatsuya Suzuki ◽  
...  

Abstract Evidence indicates that distinct brain regions are associated with various emotional states. Cortical activity may be modulated by emotional states that are triggered upon chewing with various flavors. We examined cortical activity during chewing with different tastes/odors using multi-channel near-infrared spectroscopy (NIRS). Thirty-six right-handed subjects participated in a crossover-design trial. Subjects chewed flavorful (palatable) or less flavorful (unpalatable) gum for 5 minutes. During gum-chewing these subjects experienced positive and negative emotions, respectively. Subjects rated the taste/odor/deliciousness of each gum with a visual analog scale. Bilateral hemodynamic responses in the frontal to parietal lobes, bilateral masseter muscle activation, and heart rate were measured during gum-chewing. Data changes during gum-chewing were evaluated. Subjects’ ratings of the tastes and odors of each gum differed (p<0.001). Hemodynamic response changes were significantly elevated in the bilateral primary sensorimotor cortex during gum-chewing, in comparison to resting. The hemodynamic responses of wide brain regions showed little difference between the gum conditions; however, a difference was detected in the corresponding left frontopolar/dorsolateral prefrontal cortex. Muscle activation and heart rate were not significantly different between the gum conditions. Differential processing in the left prefrontal cortex might be responsible for emotional states caused by palatable and unpalatable foods.


Sign in / Sign up

Export Citation Format

Share Document