scholarly journals Anti-GPC3-CAR T Cells Suppress the Growth of Tumor Cells in Patient-Derived Xenografts of Hepatocellular Carcinoma

2017 ◽  
Vol 7 ◽  
Author(s):  
Zhiwu Jiang ◽  
Xiaofeng Jiang ◽  
Suimin Chen ◽  
Yunxin Lai ◽  
Xinru Wei ◽  
...  
2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A121-A121
Author(s):  
Nina Chu ◽  
Michael Overstreet ◽  
Ryan Gilbreth ◽  
Lori Clarke ◽  
Christina Gesse ◽  
...  

BackgroundChimeric antigen receptors (CARs) are engineered synthetic receptors that reprogram T cell specificity and function against a given antigen. Autologous CAR-T cell therapy has demonstrated potent efficacy against various hematological malignancies, but has yielded limited success against solid cancers. MEDI7028 is a CAR that targets oncofetal antigen glypican-3 (GPC3), which is expressed in 70–90% of hepatocellular carcinoma (HCC), but not in normal liver tissue. Transforming growth factor β (TGFβ) secretion is increased in advanced HCC, which creates an immunosuppressive milieu and facilitates cancer progression and poor prognosis. We tested whether the anti-tumor efficacy of a GPC3 CAR-T can be enhanced with the co-expression of dominant-negative TGFβRII (TGFβRIIDN).MethodsPrimary human T cells were lentivirally transduced to express GPC3 CAR both with and without TGFβRIIDN. Western blot and flow cytometry were performed on purified CAR-T cells to assess modulation of pathways and immune phenotypes driven by TGFβ in vitro. A xenograft model of human HCC cell line overexpressing TGFβ in immunodeficient mice was used to investigate the in vivo efficacy of TGFβRIIDN armored and unarmored CAR-T. Tumor infiltrating lymphocyte populations were analyzed by flow cytometry while serum cytokine levels were quantified with ELISA.ResultsArmoring GPC3 CAR-T with TGFβRIIDN nearly abolished phospho-SMAD2/3 expression upon exposure to recombinant human TGFβ in vitro, indicating that the TGFβ signaling axis was successfully blocked by expression of the dominant-negative receptor. Additionally, expression of TGFβRIIDN suppressed TGFβ-driven CD103 upregulation, further demonstrating attenuation of the pathway by this armoring strategy. In vivo, the TGFβRIIDN armored CAR-T achieved superior tumor regression and delayed tumor regrowth compared to the unarmored CAR-T. The armored CAR-T cells infiltrated HCC tumors more abundantly than their unarmored counterparts, and were phenotypically less exhausted and less differentiated. In line with these observations, we detected significantly more interferon gamma (IFNγ) at peak response and decreased alpha-fetoprotein in the serum of mice treated with armored cells compared to mice receiving unarmored CAR-T, demonstrating in vivo functional superiority of TGFβRIIDN armored CAR-T therapy.ConclusionsArmoring GPC3 CAR-T with TGFβRIIDN abrogates the signaling of TGFβ in vitro and enhances the anti-tumor efficacy of GPC3 CAR-T against TGFβ-expressing HCC tumors in vivo, proving TGFβRIIDN to be an effective armoring strategy against TGFβ-expressing solid malignancies in preclinical models.Ethics ApprovalThe study was approved by AstraZeneca’s Ethics Board and Institutional Animal Care and Use Committee (IACUC).


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A130-A130
Author(s):  
Jingmei Hsu ◽  
Eric von Hofe ◽  
Michael Hsu ◽  
Koen Van Besien ◽  
Thomas Fahey ◽  
...  

BackgroundThe use of CAR T cells for solid tumors has a number of challenges, such as lack of tumor-specific targets, CAR T cell exhaustion, and the immunosuppressive tumor microenvironment. To address these challenges, AffyImmune has developed technologies to affinity tune and track CAR T cells in patients. The targeting moiety is affinity tuned to preferentially bind to tumor cells overexpressing the target while leaving normal cells with low basal levels untouched, thereby increasing the therapeutic window and allowing for more physiological T cell killing. The CAR T cells are designed to express SSTR2 (somatostatin receptor 2), which allows for the tracking of CAR T cells in vivo via PET/CT scan using FDA-approved DOTATATE.MethodsAIC100 was generated by affinity tuning the I-domain of LFA-1, the physiological ligand to ICAM-1. Various mutants with 106-fold difference in affinity were evaluated for affinity. This allowed structure activity relationships to be conducted using CAR T cells expressing the various affinity mutants against targets with varying antigen densities. The variant with micromolar affinity was clearly the most effective in non-clinical animal models. AIC100 is currently being evaluated to assess safety, CAR T expansion, tumor localization, and preliminary activity in patients with advanced thyroid cancer in a phase I study (NCT04420754). Our study uses a modified toxicity probability interval design with three dosage groups of 10 x 106, 100 x 106, and 500 x 106 cells.ResultsPreclinical studies demonstrated greater in vivo anti-tumor activity and safety with lower affinity CAR T cells. A single dose of AIC100 resulted in tumor elimination and significantly improved survival of animals. AIC100 activity was confirmed in other high ICAM-1 tumor models including breast, gastric, and multiple myeloma. In a Phase I patient given 10-million CAR T cells, near synchronous imaging of FDG and DOTATATE revealed preliminary evidence of transient CAR T expansion and tumor reduction at multiple tumor lesions, with the peak of CAR T density coinciding with the spike in CAR T numbers in blood.ConclusionsWe have developed affinity tuned CAR T cells designed to selectively target ICAM-1 overexpressing tumor cells and to spatiotemporally image CAR T cells. Near-synchronous FDG and DOTATATE scans will enhance patient safety by early detection of off-tumor CAR T activity and validation of tumor response. We anticipate that our ‘tune and track’ technology will be widely applicable to developing potent yet safe CAR T cells against hard-to-treat solid cancers.Trial RegistrationNCT04420754Ethics ApprovalIRB number19-12021154IACUC (animal welfare): All animal experiments were performed in accordance with the National Institute of Health’s Guide for the Care and Use of Laboratory Animals. Animal handling protocols were approved by the Institutional Laboratory Animal Use and Care Committee of Weill Cornell Medicine (Permit Number: 2012–0063).


2021 ◽  
Vol 11 ◽  
Author(s):  
Wei Jiang ◽  
Tao Li ◽  
Jiaojiao Guo ◽  
Jingjing Wang ◽  
Lizhou Jia ◽  
...  

T cells expressing chimeric antigen receptors, especially CD19 CAR-T cells have exhibited effective antitumor activities in B cell malignancies, but due to several factors such as antigen escape effects and tumor microenvironment, their curative potential in hepatocellular carcinoma has not been encouraging. To reduce the antigen escape risk of hepatocellular carcinoma, this study was to design and construct a bispecific CAR targeting c-Met and PD-L1. c-Met/PD-L1 CAR-T cells were obtained by lentiviral transfection, and the transfection efficiency was monitored by flow cytometry analysis. LDH release assays were used to elucidate the efficacy of c-Met/PD-L1 CAR-T cells on hepatocellular carcinoma cells. In addition, xenograft models bearing human hepatocellular carcinoma were constructed to detect the antitumor effect of c-Met/PD-L1 CAR-T cells in vivo. The results shown that this bispecific CAR was manufactured successfully, T cells modified with this bispecific CAR demonstrated improved antitumor activities against c-Met and PD-L1 positive hepatocellular carcinoma cells when compared with those of monovalent c-Met CAR-T cells or PD-L1 CAR-T cells but shown no distinct cytotoxicity on hepatocytes in vitro. In vivo experiments shown that c-Met/PD-L1 CAR-T cells significantly inhibited tumor growth and improve survival persistence compared with other groups. These results suggested that the design of single-chain, bi-specific c-Met/PD-L1 CAR-T is more effective than that of monovalent c-Met CAR-T for the treatment of hepatocellular carcinoma., and this bi-specific c-Met/PD-L1 CAR is rational and implementable with current T-cell engineering technology.


2020 ◽  
Vol Volume 13 ◽  
pp. 5707-5708
Author(s):  
Hezhi Wang ◽  
Xueshuai Ye ◽  
Yi Ju ◽  
Ziqi Cai ◽  
Xiaoxiao Wang ◽  
...  

2020 ◽  
Author(s):  
Yi-Chiu Kuo ◽  
Jeremy D. King ◽  
Cheng-Fu Kuo ◽  
Victor Kenyon ◽  
Miso Park ◽  
...  
Keyword(s):  
T Cells ◽  

Author(s):  
Kiruthiga Raghunathan ◽  
Brindha Devi P

Chronic lymphocytic leukemia cancer is a deadly one which affects the bone marrow from making it to produce more amounts of white blood cells in the humans. This disease can be treated either by radiation therapy, bone marrow transplantation, chemotherapy, or immunotherapy. In radiation therapy, the ionizing radiation is used toward the tumor cells, but the main drawback is the radiation may affect the normal cells as well. To overcome this drawback, immunotherapy chimeric antigen receptor (CAR) is used. These CAR cells will target only the antigen of the tumor cells and not damage the normal cells in the body. In this therapy, the T-cells are taken either from the patients or a healthy donor and are engineered to express the CARs which are called as CAR-T-cells. When these CAR-T-cells come in contact with the antigen present on the surface of the tumor cells, they will get activated and become toxic to the tumor cells. This new class of therapy is having a great prospect in cancer immunotherapy.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 451-451 ◽  
Author(s):  
Arnab Ghosh ◽  
Marco L. Davila ◽  
Lauren F. Young ◽  
Christopher Kloss ◽  
Gertrude Gunset ◽  
...  

Abstract Abstract 451 Chimeric antigen receptors (CAR) represent a potent strategy to target T cells against selected tumor antigens. Ongoing clinical trials indicate that autologous T cells expressing CARs targeting CD19, a B cell-associated antigen, can induce complete remission and B cell aplasia in patients with B cell malignancies. Donor CD19-CAR+ T cells could potentially be used to treat recipients undergoing allogeneic hematopoietic stem cell transplantation (allo-HSCT), but the risk of alloreactivity mediated by endogenous T cell receptors (TCR) triggering an acute GVHD is not known. This is partly due to the absence of in vivo models to study the relative effects of CAR and endogenous TCR signaling. For the first time, we have evaluated the relative effects of CD19-targeted donor T cells on the elimination of CD19+ B cells and endogenous TCR-mediated alloreactivity in mouse models of allo-HSCT. We generated a panel of retroviral vectors encoding mouse CD19-specific CARs: as a control, CD19-delta, a tail-less CAR lacking the CD3ζ signaling domain; CD19z1, which signals through its CD3ζ endodomain; and CD19-28z, which signals through CD28 and CD3ζ (Figure 1A). CD19z1+ and CD19-28z+ T cells mediated specific lysis of CD19-expressing tumors in vitro, while CD19-delta+ T cells did not. In order to assess the anti-tumor capacity of CD19-CAR+ T cells in vivo, we transferred the transduced B6 donor T cells into lethally irradiated BALB/c recipients that were administered T cell-depleted allografts and CD19+ lymphoma A20-TGL (B6–> BALB/c+A20-TGL). CD19-CAR+ T cells (CD19z1 and CD19-28z) mediated clearance of A20 tumor cells visualized by in vivo imaging of luciferase-expressing tumor cells (Figure 1B and data not shown) and significantly improved tumor free survival. CD19-CAR+ B6 T cells could sustain prolonged B cell hypoplasia when adoptively transferred into lethally irradiated haploidentical CBF1 recipients of T cell-depleted allografts (B6–> CBF1, Figure 1C). These data indicate that under alloreactive conditions, donor CD19-CAR+ T cell signaled through the CAR leading to specific elimination of CD19+ tumors and B lineage cells. In order to determine the risk of GVHD, we transferred the donor CD19-CAR+ T cells into haploidentical HSCT recipients. Interestingly, CD19-CAR+ T cells mediated significantly less acute GVHD, resulting in improved survival and lower GVHD scores (Figure 1D). Donor CD19-delta+ T cells however mediated lethal GVHD, indicating that the endogenous TCR mediated strong alloreactivity in the absence of CAR signaling. Similar results were obtained from experiments using MHC-mismatched (B6–> BALB/c) models. It is known that signaling through endogenous TCR is accompanied by down-regulation of surface TCR expression. We found significant decreases in surface CD3ϵ, TCRβ and CD90 expressions in donor CD19-delta+ T cells under alloreactive conditions. In contrast, donor CD1928z+ T cells failed to down-regulate surface TCR expression under similar conditions, suggesting that endogenous TCR function was altered in CAR-activated T cells. In the context of allo-HSCT, preferential CAR signaling at the expense of alloreactive endogenous TCR signaling may thus lead to reduced alloreactivity and attenuation of GVHD. These results provide the first pre-clinical evidence suggesting that CAR-modified, unselected donor T cells may be safely applied in an allogeneic context. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 4206-4206
Author(s):  
Janani Krishnamurthy ◽  
Brian Rabinovich ◽  
Simon Olivares ◽  
Mi Teijuan ◽  
Kirsten Switzer ◽  
...  

Abstract Human endogenous retroviruses (HERVs) are ancient viruses forming 8% of human genome. One subset of HERVs, the HERV-K has recently been found to be expressed on tumor cells including melanoma, breast cancer and lymphoma but not on normal body cells. Thus, targeting HERV-K protein as a tumor associated antigen (TAA) may be a potential treatment strategy for tumors that are resistant to conventional therapies. One approach to improve therapeutic outcome is by infusing T cells rendered specific for such TAAs preferentially expressed on tumor cells. Recognition of cell-surface TAAs independent of major histocompatibility complex can be achieved by introducing a chimeric antigen receptor (CAR) on T cells using gene therapy. This approach is currently being used in our clinical trials adoptively transferring CD19-specific CAR+ T cells into patients with B-lineage malignancies. Preliminary analysis of HERV-K env protein expression in 268 melanoma samples and 139 normal organ donor tissues using immunohistochemistry demonstrated antigen expression in tumor cells and absence of expression in normal organ tissues. The scFv region from a mouse monoclonal antibody to target HERV-K env was used to generate a CAR and cloned into Sleeping Beauty (SB) plasmid for stable expression in T cells. HERV-K-specific CAR+T cells were selectively propagated ex vivo on artificial antigen presenting cells (aAPC) using an approach already in our clinical trials. Indeed, after genetic modification of T cells and selection on HERV-K+ aAPC, over 95% of propagated T cells stably expressed the introduced HERV-K-specific CAR and exhibited redirected specificity for HERV-K+ melanoma (Figure 1). Further, the adoptive transfer of HERV-K-specific CAR+T cells killed metastatic melanoma in a mouse xenograph model. While we have chosen melanoma as our tumor model, this study has the potential to be applied to other malignancies, including lymphoma and myeloma due to restricted expression of HERV-K envelope (env) protein on these tumor cells. These data demonstrate that it is feasible to generate T cells expressing a HERV-K-specific CAR using a clinically-appealing approach as a treatment strategy for HERV-K env+ tumors. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document