scholarly journals The Impact of the Interferon/TNF-Related Apoptosis-Inducing Ligand Signaling Axis on Disease Progression in Respiratory Viral Infection and Beyond

2017 ◽  
Vol 8 ◽  
Author(s):  
Christin Peteranderl ◽  
Susanne Herold
2011 ◽  
Vol 109 (suppl_1) ◽  
Author(s):  
Hao Chen ◽  
Laurel Mckee ◽  
Gustavo Untiveros ◽  
Jessica Perez ◽  
John Konhilas

Objectives: MicroRNAs (miRs) have been identified as chief post-transcriptional regulators of cardiac disease progression. In addition, a critical role of the adenosine monophosphate-activated kinase (AMPK) pathway in the development of myocardial hypertrophy has been revealed. Yet, regulation of the AMPK pathway by miRs in the heart has not been addressed. We hypothesized that components of the AMPK pathway are targeted by miRs and alter AMPK signaling in a mouse model of hypertrophic cardiomyopathy (HCM). Methods and results: Using real-time PCR, a candidate miR screen that included 22 miRs implicated in pathological cardiac disease and/or metabolic dysregulation was performed on hearts from 60-, 120-, and 240-day-old transgenic HCM male mice harboring an R403Q mutation in the myosin heavy gene. Among early (60 day) elevated miRs were miR-195 and -451. Both miR-195 and -451 have conserved target sites in the 3′ UTR of CAB39 (MO25), a central component of the MO25/STRAD/LKB1 complex that acts as an upstream kinase for AMPK and its subsequent activation. We further confirmed the elevation of miR-195 and -451 by Northern blotting. Next, we demonstrated specific expression and a similar distribution pattern of miR-195 and -451 in cardiomyocytes of R403Q HCM hearts by in situ hybridization. To determine whether the conserved sites in MO25 3′ UTR acted as functional targets, either the miR-195 or miR-451 target sequence was cloned into a luciferase expression vector. MiR-195 but not miR-451 suppressed luciferase activity compared to the missense sequence control vector in C2C12 cells. In addition, over-expression of miR195 in C2C12 cells knocked down MO25 expression levels and downstream AMPK signaling (phosphorylation of Acetyl CoA carboxylase). Finally, parallel changes were measured in 60 day R403Q HCM male hearts that included reduced MO25 expression and lowered phosphorlation of AMPK and Acetyl CoA carboxylase. Conclusion: Our findings indicate that miR-195 targets the LKB1/AMPK signaling axis and suggest a functional role for miR-195 elevation in R403Q HCM disease progression.


2021 ◽  
Vol 9 (4) ◽  
pp. 43
Author(s):  
Akio Tada ◽  
Hidenobu Senpuku

Influenza virus and severe acute respiratory syndrome coronavirus (SARS-CoV-2) have caused respiratory diseases worldwide. Coronavirus disease 2019 (COVID-19) is now a global health concern requiring emergent measures. These viruses enter the human body through the oral cavity and infect respiratory cells. Since the oral cavity has a complex microbiota, influence of oral bacteria on respiratory virus infection is considered. Saliva has immune molecules which work as the front line in the biophylactic mechanism and has considerable influence on the incidence and progression of respiratory viral infection. Salivary scavenger molecules, such as gp340 and sialic acid, have been reported to exert anti-influenza virus activity. Salivary secretory immunoglobulin A (SIgA) has potential to acquire immunity against these viruses. Biological features of the oral cavity are thought to affect viral infection in respiratory organs in various ways. In this review, we reviewed the literature addressing the impact of oral conditions on respiratory infectious diseases caused by viruses.


2021 ◽  
pp. 1-5
Author(s):  
Christian Ineichen ◽  
Heide Baumann-Vogel ◽  
Matthias Sitzler ◽  
Daniel Waldvogel ◽  
Christian R. Baumann

Whilst some studies investigated the impact of viral infection or reduced access to medication during the COVID-19 pandemic in patients with Parkinson’s disease (PD), data on the effects of pandemic restrictions are still scarce. We retrospectively analyzed motor symptoms of longitudinally followed PD patients (n = 264) and compared motor disease progression before and during the COVID-19 pandemic. Additionally, we performed a trend analysis of the yearly evolution of motor symptoms in 755 patients from 2016 until 2021. We observed a worsening of motor symptoms and a significantly increased motor disease progression during pandemic-related restrictions as compared to before the COVID-19 outbreak.


Sign in / Sign up

Export Citation Format

Share Document