scholarly journals The Helminth Parasite Heligmosomoides polygyrus Attenuates EAE in an IL-4Rα-Dependent Manner

2020 ◽  
Vol 11 ◽  
Author(s):  
Madeleine P. J. White ◽  
Chris J. C. Johnston ◽  
John R. Grainger ◽  
Joanne E. Konkel ◽  
Richard A. O'Connor ◽  
...  
2014 ◽  
Vol 193 (6) ◽  
pp. 2984-2993 ◽  
Author(s):  
Lisa A. Reynolds ◽  
Yvonne Harcus ◽  
Katherine A. Smith ◽  
Lauren M. Webb ◽  
James P. Hewitson ◽  
...  

Parasitology ◽  
1989 ◽  
Vol 98 (1) ◽  
pp. 115-124 ◽  
Author(s):  
M. Robinson ◽  
F. Wahid ◽  
J. M. Behnke ◽  
F. S. Gilbert

SummaryThe survival of Heligmosomoides polygyrus was monitored during primary infections in female C57Bl10, NIH and BALB/c mice at low and high intensities of infection. Survivorship curves were fitted for each data set and analysed. C57Bl10 mice, given either low or high intensities of infection, harboured parasites for 28–37 weeks, heavier infections surviving marginally but significantly longer. Essentially the survivorship curves of H. polygyrus in C57Bl10 mice could be accounted for by senility, the increased probability of worms with a longer life-span occurring at high infection intensities and, possibly, by a contribution from host-protective immune mechanisms in the terminal stages of infection. The pattern of survivorship was different in NIH and BALB/c mice. NIH mice showed weak but significant density-dependent suppression of parasite loss and infections in this strain did not exceed 27·5 weeks in duration. Primary infections in BALB/c mice were briefer still and showed marked dependence on parasite density. Thus low-level infections lasted 10–15 weeks whereas heavier infections survived for 21–34 weeks. The data suggested that both strains developed host-protective responses to adult H. polygyrus and that parasite survival was curtailed earlier than would be expected if senility alone was involved. The hybrid strains (C57Bl10 × NIH)F1 and (B10G × NIH)F1 both expelled H. polygyrus in a dose-dependent manner, worm loss commencing within 10 weeks of infection. In some experiments worm loss was clearly evident by weeks 4 and 6. These hybrid strains showed gene complementation in that adult worms were cleared considerably earlier than in parental strains.


2012 ◽  
Vol 34 (6) ◽  
pp. 829-846 ◽  
Author(s):  
Lisa A. Reynolds ◽  
Kara J. Filbey ◽  
Rick M. Maizels

Author(s):  
Gemma A.J. Kuijpers ◽  
Harvey B. Pollard

Exocytotic fusion of granules in the adrenal medulla chromaffin cell is triggered by a rise in the concentration of cytosolic Ca2+ upon cell activation. The protein synexin, annexin VII, was originally found in the adrenal medulla and has been shown to cause aggregation and to support fusion of chromaffin granules in a Ca2+-dependent manner. We have previously suggested that synexin may there fore play a role in the exocytotic fusion process. In order to obtain more structural information on synexin, we performed immuno-electron microscopy on frozen ultrathin sections of both isolated chromaffin granules and chromaffin cells.Chromaffin granules were isolated from bovine adrenal medulla, and synexin was isolated from bovine lung. Granules were incubated in the presence or absence of synexin (24 μg per mg granule protein) and Ca2+ (1 mM), which induces maximal granule aggregation, in 0.3M sucrose-40m MMES buffer(pH 6.0). Granules were pelleted, washed twice in buffer without synexin and fixed with 2% glutaraldehyde- 2% para formaldehyde in 0.1 M phosphate buffer (GA/PFA) for 30 min. Chromaffin cells were isolated and cultured for 3-5 days, and washed and incubated in Krebs solution with or without 20 uM nicotine. Cells were fixed 90 sec after on set of stimulation with GA/PFA for 30 min. Fixed granule or cell pellets were washed, infiltrated with 2.3 M sucrose in PBS, mounted and frozen in liquid N2.


2020 ◽  
Vol 64 (2) ◽  
pp. 383-396
Author(s):  
Lara K. Krüger ◽  
Phong T. Tran

Abstract The mitotic spindle robustly scales with cell size in a plethora of different organisms. During development and throughout evolution, the spindle adjusts to cell size in metazoans and yeast in order to ensure faithful chromosome separation. Spindle adjustment to cell size occurs by the scaling of spindle length, spindle shape and the velocity of spindle assembly and elongation. Different mechanisms, depending on spindle structure and organism, account for these scaling relationships. The limited availability of critical spindle components, protein gradients, sequestration of spindle components, or post-translational modification and differential expression levels have been implicated in the regulation of spindle length and the spindle assembly/elongation velocity in a cell size-dependent manner. In this review, we will discuss the phenomenon and mechanisms of spindle length, spindle shape and spindle elongation velocity scaling with cell size.


2014 ◽  
Vol 84 (1-2) ◽  
pp. 79-91 ◽  
Author(s):  
Amin F. Majdalawieh ◽  
Hyo-Sung Ro

Background: Foam cell formation resulting from disrupted macrophage cholesterol efflux, which is triggered by PPARγ1 and LXRα, is a hallmark of atherosclerosis. Sesamin and sesame oil exert anti-atherogenic effects in vivo. However, the exact molecular mechanisms underlying such effects are not fully understood. Aim: This study examines the potential effects of sesamin (0, 25, 50, 75, 100 μM) on PPARγ1 and LXRα expression and transcriptional activity as well as macrophage cholesterol efflux. Methods: PPARγ1 and LXRα expression and transcriptional activity are assessed by luciferase reporter assays. Macrophage cholesterol efflux is evaluated by ApoAI-specific cholesterol efflux assays. Results: The 50 μM, 75 μM, and 100 μM concentrations of sesamin up-regulated the expression of PPARγ1 (p< 0.001, p < 0.001, p < 0.001, respectively) and LXRα (p = 0.002, p < 0.001, p < 0.001, respectively) in a concentration-dependent manner. Moreover, 75 μM and 100 μM concentrations of sesamin led to 5.2-fold (p < 0.001) and 6.0-fold (p<0.001) increases in PPAR transcriptional activity and 3.9-fold (p< 0.001) and 4.2-fold (p < 0.001) increases in LXR transcriptional activity, respectively, in a concentration- and time-dependent manner via MAPK signaling. Consistently, 50 μM, 75 μM, and 100 μM concentrations of sesamin improved macrophage cholesterol efflux by 2.7-fold (p < 0.001), 4.2-fold (p < 0.001), and 4.2-fold (p < 0.001), respectively, via MAPK signaling. Conclusion: Our findings shed light on the molecular mechanism(s) underlying sesamin’s anti-atherogenic effects, which seem to be due, at least in part, to its ability to up-regulate PPARγ1 and LXRα expression and transcriptional activity, improving macrophage cholesterol efflux. We anticipate that sesamin may be used as a therapeutic agent for treating atherosclerosis.


Sign in / Sign up

Export Citation Format

Share Document