scholarly journals Decidual Natural Killer Cells: A Good Nanny at the Maternal-Fetal Interface During Early Pregnancy

2021 ◽  
Vol 12 ◽  
Author(s):  
Yuefang Liu ◽  
Shujun Gao ◽  
Yangjing Zhao ◽  
Hui Wang ◽  
Qiong Pan ◽  
...  

Decidual natural killer (dNK) cells are the tissue-resident and major subpopulation of NK cells at the maternal-fetal interface. It has been demonstrated that dNK cells play pivotal roles in pregnancy, including keeping maternal-fetal immune tolerance, promoting extravillous trophoblast (EVT) cell invasion, and driving uterine spiral artery remodeling. However, the molecular mechanisms haven’t been elucidated until recent years. In this review, we systemically introduce the generation, subsets, and surface or soluble molecules of dNK cells, which are critical for maintaining the functions of dNK cells. Further, new functions of dNK cells including well-controlled cytotoxicity, immunosurveillance and immunotrophism supporting via the cell-cell interaction between dNK cells and EVT cells are mainly focused. The molecular mechanisms involved in these functions are also illustrated. Moreover, pregnancy-associated diseases caused by the dNK cells abnormalities are discussed. It will be important for future investigations about the mechanism of maintenance of pregnancy and parturition and potential clinical applications of dNK cells.

Lab on a Chip ◽  
2021 ◽  
Author(s):  
Yong Pu ◽  
Jeremy Gingrich ◽  
Almudena Veiga-Lopez

A novel 3D microfluidic system for placenta trophoblast cell invasion and cell-to-cell interaction studies under dynamic environment conditions.


2015 ◽  
Vol 112 (43) ◽  
pp. 13312-13317 ◽  
Author(s):  
Tamara Tilburgs ◽  
J. Henry Evans ◽  
Ângela C. Crespo ◽  
Jack L. Strominger

The interaction of noncytotoxic decidual natural killer cells (dNK) and extravillous trophoblasts (EVT) at the maternal–fetal interface was studied. Confocal microscopy revealed that many dNK interact with a single large EVT. Filamentous projections from EVT enriched in HLA-G were shown to contact dNK, and may represent the initial stage of synapse formation. As isolated, 2.5% of dNK contained surface HLA-G. However, surface HLA-G–negative dNK contained internalized HLA-G. Activation of dNK resulted in the disappearance of internalized HLA-G in parallel with restoration of cytotoxicity. Surface HLA-G was reacquired by incubation with EVT. This HLA-G cycle of trogocytosis, endocytosis, degradation, and finally reacquisition provides a transient and localized acquisition of new functional properties by dNK upon interaction with EVT. Interruption of the cycle by activation of dNK by cytokines and/or viral products serves to ensure the NK control of virus infection at the interface, and is illustrated here by the response of dNK to human cytomegalo virus (HCMV)-infected decidual stromal cells. Thus, the HLA-G cycle in dNK can provide both for NK tolerance and antiviral immunity.


2021 ◽  
Vol 118 (10) ◽  
pp. e2016517118
Author(s):  
Kaela M. Varberg ◽  
Khursheed Iqbal ◽  
Masanaga Muto ◽  
Mikaela E. Simon ◽  
Regan L. Scott ◽  
...  

Invasive trophoblast cells are critical to spiral artery remodeling in hemochorial placentation. Insufficient trophoblast cell invasion and vascular remodeling can lead to pregnancy disorders including preeclampsia, preterm birth, and intrauterine growth restriction. Previous studies in mice identified achaete-scute homolog 2 (ASCL2) as essential to extraembryonic development. We hypothesized that ASCL2 is a critical and conserved regulator of invasive trophoblast cell lineage development. In contrast to the mouse, the rat possesses deep intrauterine trophoblast cell invasion and spiral artery remodeling similar to human placentation. In this study, we investigated invasive/extravillous trophoblast (EVT) cell differentiation using human trophoblast stem (TS) cells and a loss-of-function mutant Ascl2 rat model. ASCL2 transcripts are expressed in the EVT column and junctional zone, which represent tissue sources of invasive trophoblast progenitor cells within human and rat placentation sites, respectively. Differentiation of human TS cells into EVT cells resulted in significant up-regulation of ASCL2 and several other transcripts indicative of EVT cell differentiation. Disruption of ASCL2 impaired EVT cell differentiation, as indicated by cell morphology and transcript profiles. RNA sequencing analysis of ASCL2-deficient trophoblast cells identified both down-regulation of EVT cell-associated transcripts and up-regulation of syncytiotrophoblast-associated transcripts, indicative of dual activating and repressing functions. ASCL2 deficiency in the rat impacted placental morphogenesis, resulting in junctional zone dysgenesis and failed intrauterine trophoblast cell invasion. ASCL2 acts as a critical and conserved regulator of invasive trophoblast cell lineage development and a modulator of the syncytiotrophoblast lineage.


Placenta ◽  
2010 ◽  
Vol 31 (7) ◽  
pp. 595-601 ◽  
Author(s):  
L.G. De Oliveira ◽  
G.E. Lash ◽  
C. Murray-Dunning ◽  
J.N. Bulmer ◽  
B.A. Innes ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document