scholarly journals Dysregulated Immune Responses in COVID-19 Patients Correlating With Disease Severity and Invasive Oxygen Requirements

2021 ◽  
Vol 12 ◽  
Author(s):  
Paulina García-González ◽  
Fabián Tempio ◽  
Camila Fuentes ◽  
Consuelo Merino ◽  
Leonardo Vargas ◽  
...  

The prognosis of severe COVID-19 patients has motivated research communities to uncover mechanisms of SARS-CoV-2 pathogenesis also on a regional level. In this work, we aimed to understand the immunological dynamics of severe COVID-19 patients with different degrees of illness, and upon long-term recovery. We analyzed immune cellular subsets and SARS-CoV-2-specific antibody isotypes of 66 COVID-19 patients admitted to the Hospital Clínico Universidad de Chile, which were categorized according to the WHO ten-point clinical progression score. These included 29 moderate patients (score 4-5) and 37 severe patients under either high flow oxygen nasal cannula (18 patients, score 6), or invasive mechanical ventilation (19 patients, score 7-9), plus 28 convalescent patients and 28 healthy controls. Furthermore, six severe patients that recovered from the disease were longitudinally followed over 300 days. Our data indicate that severe COVID-19 patients display increased frequencies of plasmablasts, activated T cells and SARS-CoV-2-specific antibodies compared to moderate and convalescent patients. Remarkably, within the severe COVID-19 group, patients rapidly progressing into invasive mechanical ventilation show higher frequencies of plasmablasts, monocytes, eosinophils, Th1 cells and SARS-CoV-2-specific IgG than patients under high flow oxygen nasal cannula. These findings demonstrate that severe COVID-19 patients progressing into invasive mechanical ventilation show a distinctive type of immunity. In addition, patients that recover from severe COVID-19 begin to regain normal proportions of immune cells 100 days after hospital discharge and maintain high levels of SARS-CoV-2-specific IgG throughout the study, which is an indicative sign of immunological memory. Thus, this work can provide useful information to better understand the diverse outcomes of severe COVID-19 pathogenesis.

2021 ◽  
Author(s):  
Paulina García-González ◽  
Fabián Tempio ◽  
Camila Fuentes ◽  
Consuelo Merino ◽  
Leonardo Vargas ◽  
...  

AbstractThe prognosis of severe COVID-19 patients has motivated research communities to uncover mechanisms of SARS-CoV-2 pathogenesis also on a regional level. In this work, we aimed to understand the immunological dynamics of severe COVID-19 patients with different degrees of illness, and upon long-term recovery.We analyzed immune cellular subsets and SARS-CoV-2-specific antibody isotypes of 66 COVID-19 patients admitted to the Hospital Clínico Universidad de Chile, which were categorized according to the WHO ten-point clinical progression score. These included 29 moderate patients (score 4-5) and 37 severe patients under either high flow oxygen nasal cannula (18 patients, score 6), or invasive mechanical ventilation (19 patients, score 7-9), plus 28 convalescent patients and 28 healthy controls. Furthermore, six severe patients that recovered from the disease were longitudinally followed over 300 days.Our data indicate that severe COVID-19 patients display increased frequencies of plasmablasts, activated T cells and SARS-CoV-2-specific antibodies compared to moderate and convalescent patients. Remarkably, within the severe COVID-19 group, patients rapidly progressing into invasive mechanical ventilation show higher frequencies of plasmablasts, monocytes, eosinophils, Th1 cells and SARS-CoV-2-specific IgG than patients under high flow oxygen nasal cannula. These findings demonstrate that severe COVID-19 patients progressing into invasive mechanical ventilation show a distinctive type of immunity. In addition, patients that recover from severe COVID-19 begin to regain normal proportions of immune cells 100 days after hospital discharge and maintain high levels of SARS-CoV-2-specific IgG throughout the study, which is an indicative sign of immunological memory. Thus, this work can provide a useful benchmark for improvement of disease outcomes.


2021 ◽  
pp. 088506662110575
Author(s):  
Molano Franco Daniel ◽  
Gómez Duque Mario ◽  
Beltrán Edgar ◽  
Villabon Mario ◽  
Hurtado Alejandra ◽  
...  

Introduction: The use of high-flow nasal cannulas (HFNC) in patients with hypoxemic ventilatory failure reduces the need for mechanical ventilation and does not increase mortality when intubation is promptly applied. The aim of the study is to describe the behavior of HFNC in patients who live at high altitudes, and the performance of predictors of success/failure of this strategy. Methods: Prospective multicenter cohort study, with patients aged over 18 years recruited for 12 months in 2020 to 21. All had a diagnosis of hypoxemic respiratory failure secondary to pneumonia, were admitted to intensive care units, and were receiving initial management with a high-flow nasal cannula. The variables assessed included need for intubation, mortality in ICU, and the validation of SaO2, respiratory rate (RR) and ROX index (IROX) as predictors of HFNC success / failure. Results: One hundred and six patients were recruited, with a mean age of 59 years and a success rate of 74.5%. Patients with treatment failure were more likely to be obese (BMI 27.2 vs 25.5; OR: 1.03; 95% CI: .95-1.1) and had higher severity scores at admission (APACHE II 12 vs 20; OR 1.15; 95% CI: 1.06-1.24). Respiratory rates after 12 (AUC .81 CI: .70-.92) and 18 h (AUC .85 CI: .72-0.90) of HFNC use were the best predictors of failure, performing better than those that included oxygenation. ICU mortality was higher in the failure group (6% vs 29%; OR 8.8; 95% CI:1.75-44.7). Conclusions: High-flow oxygen cannula therapy in patients with hypoxemic respiratory failure living at altitudes above 2600 m is associated with low rates of therapy failure and a reduced need for mechanical ventilation in the ICU. The geographical conditions and secondary physiological changes influence the performance of the traditionally validated predictors of therapy success. Respiratory rate <30 proved to be the best indicator of early success of the device at 12 h of use.


2021 ◽  
Vol 10 (10) ◽  
pp. 2214
Author(s):  
Manuel Rubio-Rivas ◽  
Xavier Corbella ◽  
Francesc Formiga ◽  
Estela Menéndez Fernández ◽  
María Martín Escalante ◽  
...  

(1) Background: The inflammation or cytokine storm that accompanies COVID-19 marks the prognosis. This study aimed to identify three risk categories based on inflammatory parameters on admission. (2) Methods: Retrospective cohort study of patients diagnosed with COVID-19, collected and followed-up from 1 March to 31 July 2020, from the nationwide Spanish SEMI-COVID-19 Registry. The three categories of low, intermediate, and high risk were determined by taking into consideration the terciles of the total lymphocyte count and the values of C-reactive protein, lactate dehydrogenase, ferritin, and D-dimer taken at the time of admission. (3) Results: A total of 17,122 patients were included in the study. The high-risk group was older (57.9 vs. 64.2 vs. 70.4 years; p < 0.001) and predominantly male (37.5% vs. 46.9% vs. 60.1%; p < 0.001). They had a higher degree of dependence in daily tasks prior to admission (moderate-severe dependency in 10.8% vs. 14.1% vs. 17%; p < 0.001), arterial hypertension (36.9% vs. 45.2% vs. 52.8%; p < 0.001), dyslipidemia (28.4% vs. 37% vs. 40.6%; p < 0.001), diabetes mellitus (11.9% vs. 17.1% vs. 20.5%; p < 0.001), ischemic heart disease (3.7% vs. 6.5% vs. 8.4%; p < 0.001), heart failure (3.4% vs. 5.2% vs. 7.6%; p < 0.001), liver disease (1.1% vs. 3% vs. 3.9%; p = 0.002), chronic renal failure (2.3% vs. 3.6% vs. 6.7%; p < 0.001), cancer (6.5% vs. 7.2% vs. 11.1%; p < 0.001), and chronic obstructive pulmonary disease (5.7% vs. 5.4% vs. 7.1%; p < 0.001). They presented more frequently with fever, dyspnea, and vomiting. These patients more frequently required high flow nasal cannula (3.1% vs. 4.4% vs. 9.7%; p < 0.001), non-invasive mechanical ventilation (0.9% vs. 3% vs. 6.3%; p < 0.001), invasive mechanical ventilation (0.6% vs. 2.7% vs. 8.7%; p < 0.001), and ICU admission (0.9% vs. 3.6% vs. 10.6%; p < 0.001), and had a higher percentage of in-hospital mortality (2.3% vs. 6.2% vs. 23.9%; p < 0.001). The three risk categories proved to be an independent risk factor in multivariate analyses. (4) Conclusion: The present study identifies three risk categories for the requirement of high flow nasal cannula, mechanical ventilation, ICU admission, and in-hospital mortality based on lymphopenia and inflammatory parameters.


2019 ◽  
Vol 30 (1) ◽  
pp. 66-73
Author(s):  
Elizabeth C. Ciociola ◽  
Karan R. Kumar ◽  
Kanecia O. Zimmerman ◽  
Elizabeth J. Thompson ◽  
Melissa Harward ◽  
...  

AbstractBackground:Preoperative mechanical ventilation is associated with morbidity and mortality following CHD surgery, but prior studies lack a comprehensive analysis of how preoperative respiratory support mode and timing affects outcomes.Methods:We retrospectively collected data on children <18 years of age undergoing cardiac surgery at an academic tertiary care medical centre. Using multivariable regression, we examined the association between modes of preoperative respiratory support (nasal cannula, high-flow nasal cannula/noninvasive ventilation, or invasive mechanical ventilation), escalation of preoperative respiratory support, and invasive mechanical ventilation on the day of surgery for three outcomes: operative mortality, postoperative length of stay, and postoperative complications. We repeated our analysis in a subcohort of neonates.Results:A total of 701 children underwent 800 surgical procedures, and 40% received preoperative respiratory support. Among neonates, 243 patients underwent 253 surgical procedures, and 79% received preoperative respiratory support. In multivariable analysis, all modes of preoperative respiratory support, escalation in preoperative respiratory support, and invasive mechanical ventilation on the day of surgery were associated with increased odds of prolonged length of stay in children and neonates. Children (odds ratio = 3.69, 95% CI 1.2–11.4) and neonates (odds ratio = 8.97, 95% CI 1.31–61.14) on high-flow nasal cannula/noninvasive ventilation had increased odds of operative mortality compared to those on room air.Conclusion:Preoperative respiratory support is associated with prolonged length of stay and mortality following CHD surgery. Knowing how preoperative respiratory support affects outcomes may help guide surgical timing, inform prognostic conversations, and improve risk stratification models.


2021 ◽  
Vol 15 (1) ◽  
Author(s):  
Amr Mounir Shoukri

Abstract Background High flow nasal cannula oxygen (HFNCO) is a relatively new technique used to deliver oxygen in respiratory failure patients. This retrospective study is aiming to assess the role and benefits of using HFNCO compared to non-invasive ventilation (NIV) in management of patients with acute hypoxemic respiratory failure associated with coronavirus disease 2019 (COVID-19). Results A retrospective analysis of the files of 63 patients with COVID-19 and acute hypoxemic respiratory failure admitted to the intensive care unit (ICU), 37 patients received HFNCO as initial therapy, and 26 patients were primarily treated with NIV. There was no significant difference between the 2 groups in terms of baseline characteristics, laboratory tests, arterial blood gases, PaO2/FiO2 values, and vital signs. Re-assessment after 24 h of starting treatment with either HFNCO or NIV showed significant improvement (P<0.01) in the respiratory rate, heart rate, and oxygenation parameters. The magnitude of improvement of the vital signs and oxygenation was not significantly different between patients using HFNCO or NIV. Success rate of HFNCO was 86.4%, endotracheal intubation with invasive mechanical ventilation was required in 10.81% of patients, and mortality rate was 2.7%. Success rate of NIV was 84.6%, endotracheal intubation rate was 11.53%, and mortality rate was 3.8%. No significant difference (P>0.05) between the 2 groups as regards the duration of treatment, rate of endotracheal intubation with invasive mechanical ventilation, and mortality rate. Conclusion High flow nasal cannula oxygen (HFNCO) is effective in the management of acute hypoxemic respiratory failure associated with COVID-19. Its efficacy is similar to NIV, with no difference in the duration of treatment, endotracheal intubation rate, or mortality rate.


Sign in / Sign up

Export Citation Format

Share Document