scholarly journals Immunoprofiling Reveals Novel Mast Cell Receptors and the Continuous Nature of Human Lung Mast Cell Heterogeneity

2022 ◽  
Vol 12 ◽  
Author(s):  
Elin Rönnberg ◽  
Daryl Zhong Hao Boey ◽  
Avinash Ravindran ◽  
Jesper Säfholm ◽  
Ann-Charlotte Orre ◽  
...  

BackgroundImmunohistochemical analysis of granule-associated proteases has revealed that human lung mast cells constitute a heterogeneous population of cells, with distinct subpopulations identified. However, a systematic and comprehensive analysis of cell-surface markers to study human lung mast cell heterogeneity has yet to be performed.MethodsHuman lung mast cells were obtained from lung lobectomies, and the expression of 332 cell-surface markers was analyzed using flow cytometry and the LEGENDScreen™ kit. Markers that exhibited high variance were selected for additional analyses to reveal whether they were correlated and whether discrete mast cell subpopulations were discernable.ResultsWe identified the expression of 102 surface markers on human lung mast cells, 23 previously not described on mast cells, of which several showed high continuous variation in their expression. Six of these markers were correlated: SUSD2, CD49a, CD326, CD34, CD66 and HLA-DR. The expression of these markers was also correlated with the size and granularity of mast cells. However, no marker produced an expression profile consistent with a bi- or multimodal distribution.ConclusionsLEGENDScreen analysis identified more than 100 cell-surface markers on mast cells, including 23 that, to the best of our knowledge, have not been previously described on human mast cells. The comprehensive expression profiling of the 332 surface markers did not identify distinct mast cell subpopulations. Instead, we demonstrate the continuous nature of human lung mast cell heterogeneity.

Author(s):  
Elin Rönnberg ◽  
Daryl Boey Zhong Hao ◽  
Avinash Ravindran ◽  
Jesper Säfholm ◽  
Ann-Charlotte Orre ◽  
...  

Background: Immunohistochemical analysis of granule-associated proteases has revealed that human lung mast cells constitute a heterogeneous population of cells, with distinct subpopulations identified. However, a systematic and comprehensive analysis of cell-surface markers to study human lung mast cell heterogeneity has yet to be performed. Methods: Human lung mast cells were obtained from lung lobectomies, and the expression of 332 cell-surface markers was analyzed using flow cytometry and the LEGENDScreen kit. Markers that exhibited high variance were selected for additional analyses to reveal whether they were correlated and whether discrete mast cell subpopulations were discernable. Results: We identified the expression of 102 surface markers on human lung mast cells. Several markers showed high continuous variation in expression within the mast cell population. Six of these markers were correlated: SUSD2, CD49a, CD326, CD34, CD66 and HLA-DR. The expression of these markers was also correlated with the size and granularity of mast cells. However, no marker produced an expression profile consistent with a bi- or multimodal distribution. Conclusions: LEGENDScreen analysis identified more than 100 cell-surface markers on mast cells, including 23 that, to the best of our knowledge, have not been previously described on human mast cells. Several of the newly described markers are known to be involved in sensing the microenvironment, and their identification can shed new light on mast cell functions. The exhaustive expression profiling of the 332 surface markers failed to detect distinct mast cell subpopulations. Instead, we demonstrate the continuous nature of human lung mast cell heterogeneity.


2021 ◽  
Author(s):  
Elin Rönnberg ◽  
Daryl Zhong Hao Boey ◽  
Avinash Ravindran ◽  
Jesper Säfholm ◽  
Ann-Charlotte Orre ◽  
...  

AbstractBackgroundImmunohistochemical analysis of granule-associated proteases have revealed that human lungs mast cells constitute a heterogeneous population of cells, with distinct subpopulations identified. However, a systematic and comprehensive analysis of cell surface markers to study human lung mast cell heterogeneity is yet to be performed.MethodsHuman lung mast cells were obtained from lung lobectomies and the expression of 332 cell surface markers were analyzed using flow cytometry and the LEGENDScreen™ kit. Markers that exhibited a high variance were selected for additional analyses to reveal whether they correlated and if discrete mast cell subpopulations were discernable.ResultsWe identified expression of 102 surface markers on human lung mast cells. Several markers showed a high continuous variation of expression within the mast cell population. Six of these markers correlated: SUSD2, CD49a, CD326, CD34, CD66 and HLA-DR. The expression of these markers also correlated to the size and granularity of the mast cells. However, no marker produced an expression profile consistent with a bi- or multimodal distribution.ConclusionsLEGENDScreen analysis identified more than 100 cell surface markers on mast cells, out of which 23 have to our knowledge not previously described on human mast cells. Several of the newly described markers are known to be involved in sensing the microenvironment, and their identification can shed new light on mast cell functions. The exhaustive expression profiling of the 332 surface markers failed to detect distinct mast cell subpopulations. Instead, we demonstrate a continuous nature of human lung mast cell heterogeneity.


Thorax ◽  
2009 ◽  
Vol 64 (4) ◽  
pp. 278-280 ◽  
Author(s):  
P. Bradding

1984 ◽  
Vol 62 (6) ◽  
pp. 734-737 ◽  
Author(s):  
F. Shanahan ◽  
J. A. Denburg ◽  
J. Bienenstock ◽  
A. D. Befus

Increasing evidence for the existence of inter- and intra-species mast cell heterogeneity has expanded the potential biological role of this cell. Early studies suggesting that mast cells at mucosal sites differ morphologically and histochemically from connective tissue mast cells have been confirmed using isolated intestinal mucosal mast cells in the rat and more recently in man. These studies also established that mucosal mast cells are functionally distinct from connective tissue mast cells. Thus, mucosal and connective tissue mast cells differ in their responsiveness to a variety of mast cell secretagogues and antiallergic agents. Speculation about the therapeutic use of antiallergic drugs in disorders involving intestinal mast cells cannot, therefore, be based on extrapolation from studies of their effects on mast cells from other sites. Regulatory mechanisms for mast cell secretion may also be heterogeneous since mucosal mast cells differ from connective tissue mast cells in their response to a variety of physiologically occurring regulatory peptides. The development of techniques to purify isolated mast cell sub-populations will facilitate future analysis of the biochemical basis of the functional heterogeneity of mast cells.


Blood ◽  
1992 ◽  
Vol 79 (3) ◽  
pp. 708-712 ◽  
Author(s):  
CB Guo ◽  
A Kagey-Sobotka ◽  
LM Lichtenstein ◽  
BS Bochner

Abstract Human mast cells have been purified from uterine tissues, and their surface marker profile and function have been evaluated as part of ongoing studies of mast cell heterogeneity. Using a panel of antibodies, purified uterine mast cells (UMC; 81% +/- 7% purity, n = 10) were analyzed by immunofluorescence and flow cytometry for surface expression of various antigens. Consistent with previous analyses of mast cells from other tissues, UMC expressed HLA class I, IgE, c-kit receptor, CD9, CD33, CD43, CD45, and CD54, while CD11a, CD11b, CD14, CD16, CD23, and CD64 were not detected. Unlike other mast cells, UMC expressed CD11c/CD18 (p150,95) and CD32 (Fc gamma RII). Additional antigens not previously studied on mast cells included the selectin LECAM-1 (Leu-8) and several beta 1 and beta 3 integrins; expression of very late activation antigen-4 (VLA-4) (CD49d/CD29), VLA-5 (CD49e/CD29), and the vitronectin receptor (CD51/CD61) was seen. Functional studies showed that treatment of human umbilical vein endothelial cells with interleukin-1 (5 ng/mL for 4 hours) resulted in a twofold to threefold increase in adhesiveness for UMC. Purification procedures did not alter histamine release responses to anti-IgE or the calcium ionophore A23187, and treatment of UMC with an anti-CD32 monoclonal antibody (IV.3) did not induce histamine release or alter anti-IgE-induced release. These data suggest that UMC may possess unique phenotypic characteristics, and support the concept of mast cell heterogeneity.


2018 ◽  
Vol 282 (1) ◽  
pp. 35-46 ◽  
Author(s):  
Barbara Frossi ◽  
Francesca Mion ◽  
Riccardo Sibilano ◽  
Luca Danelli ◽  
Carlo E. M. Pucillo

Allergy ◽  
2006 ◽  
Vol 61 (9) ◽  
pp. 1047-1053 ◽  
Author(s):  
D. Kaur ◽  
F. Hollins ◽  
L. Woodman ◽  
W. Yang ◽  
P. Monk ◽  
...  

Blood ◽  
1992 ◽  
Vol 79 (3) ◽  
pp. 708-712 ◽  
Author(s):  
CB Guo ◽  
A Kagey-Sobotka ◽  
LM Lichtenstein ◽  
BS Bochner

Human mast cells have been purified from uterine tissues, and their surface marker profile and function have been evaluated as part of ongoing studies of mast cell heterogeneity. Using a panel of antibodies, purified uterine mast cells (UMC; 81% +/- 7% purity, n = 10) were analyzed by immunofluorescence and flow cytometry for surface expression of various antigens. Consistent with previous analyses of mast cells from other tissues, UMC expressed HLA class I, IgE, c-kit receptor, CD9, CD33, CD43, CD45, and CD54, while CD11a, CD11b, CD14, CD16, CD23, and CD64 were not detected. Unlike other mast cells, UMC expressed CD11c/CD18 (p150,95) and CD32 (Fc gamma RII). Additional antigens not previously studied on mast cells included the selectin LECAM-1 (Leu-8) and several beta 1 and beta 3 integrins; expression of very late activation antigen-4 (VLA-4) (CD49d/CD29), VLA-5 (CD49e/CD29), and the vitronectin receptor (CD51/CD61) was seen. Functional studies showed that treatment of human umbilical vein endothelial cells with interleukin-1 (5 ng/mL for 4 hours) resulted in a twofold to threefold increase in adhesiveness for UMC. Purification procedures did not alter histamine release responses to anti-IgE or the calcium ionophore A23187, and treatment of UMC with an anti-CD32 monoclonal antibody (IV.3) did not induce histamine release or alter anti-IgE-induced release. These data suggest that UMC may possess unique phenotypic characteristics, and support the concept of mast cell heterogeneity.


1995 ◽  
Vol 106 (4) ◽  
pp. 386-393 ◽  
Author(s):  
Vincenzo Patella ◽  
Gennaro de Crescenzo ◽  
Anna Ciccarelli ◽  
Isabella Marinò ◽  
Monika Adt ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document