scholarly journals Absolute Baltic Sea Level Trends in the Satellite Altimetry Era: A Revisit

2021 ◽  
Vol 8 ◽  
Author(s):  
Marcello Passaro ◽  
Felix L. Müller ◽  
Julius Oelsmann ◽  
Laura Rautiainen ◽  
Denise Dettmering ◽  
...  

The absolute sea level trend from May 1995 to May 2019 in the Baltic Sea is analyzed by means of a regional monthly gridded dataset based on a dedicated processing of satellite altimetry data. In addition, we evaluate the role of the North Atlantic Oscillation and the wind patterns in shaping differences in sea level trend and variability at a sub-basin scale. To compile the altimetry dataset, we use information collected in coastal areas and from leads within sea-ice. The dataset is validated by comparison with tide gauges and the available global gridded altimetry products. The agreement between trends computed from satellite altimetry and tide gauges improves by 9%. The rise in sea level is statistically significant in the entire region of study and higher in winter than in summer. A gradient of over 3 mm/yr in sea level rise is observed, with the north and east of the basin rising more than the south-west. Part of this gradient (about 1 mm/yr) is directly explained by a regression analysis of the wind contribution on the sea level time series. A sub-basin analysis comparing the northernmost part (Bay of Bothnia) with the south-west reveals that the differences in winter sea level anomalies are related to different phases of the North-Atlantic Oscillation (0.71 correlation coefficient). Sea level anomalies are higher in the Bay of Bothnia when winter wind forcing pushes waters through Ekman transport from the south-west toward east and north. The study also demonstrates the maturity of enhanced satellite altimetry products to support local sea level studies in areas characterized by complex coastlines or sea-ice coverage. The processing chain used in this study can be exported to other regions, in particular to test the applicability in regions affected by larger ocean tides.

2020 ◽  
Vol 55 (4) ◽  
pp. 531-553
Author(s):  
Małgorzata Świerczyńska-Chlaściak ◽  
Tomasz Niedzielski

AbstractThe objective of this paper is to present a new approach for forecasting NAO index (NAOi) based on predictions of sea level anomalies (SLAs). We utilize significant correlations (Pearson’s r up to 0.69) between sea surface height (SSH) calculated for the North Atlantic (15–65°N, basin-wide) and winter Hurrell NAOi, as shown by Esselborn and Eden (Geophys Res Lett 28:3473–3476, 2001). We consider the seasonal and monthly data of Hurrell NAOi, ranging from 1993 to 2017. Weekly prognoses of SLA are provided by the Prognocean Plus system which uses several data-based models to predict sea level variation. Our experiment consists of three steps: (1) we calculate correlation between the first principal component (PC1) of SSH/SLA data and NAOi, (2) we determine coefficients of a linear regression model which describes the relationship between winter NAOi and PC1 of SLA data (1993–2013), (3) we build two regression models in order to predict winter NAOi (by attaching SLA forecasts and applying coefficients of the fitted regression models). The resulting 3-month prognoses of winter NAOi are found to reveal mean absolute errors of 1.5 or less. The choice of method for preparing SLA data for principal component analysis is shown to have a stronger impact on the prediction performance than the selection of SLA prediction method itself.


2021 ◽  
Author(s):  
Julius Oelsmann ◽  

<p>For sea level studies, coastal adaptation, and planning for future sea level scenarios, regional responses require regionally-tailored sea level information. Global sea level products from satellite altimeter missions are now available through the European Space Agency’s (ESA) Climate Change Initiative Sea Level Project (SL_cci). However, these global datasets are not entirely appropriate for supporting regional actions. Particularly for the Baltic Sea region, complications such as coastal complexity and sea-ice restrain our ability to exploit radar altimetry data.</p><p>This presentation highlights the benefits and opportunities offered by such regionalised advances, through an examination by the ESA-funded Baltic SEAL project (http://balticseal.eu/). We present the challenges faced, and solutions implemented, to develop new dedicated along-track and gridded sea level datasets for Baltic Sea stakeholders, spanning the years 1995-2019. Advances in waveform classification and altimetry echo-fitting, expansion of echo-fitting to a wide range of altimetry missions (including Delay-Doppler altimeters), and Baltic-focused multi-mission cross calibration, enable all altimetry missions’ data to be integrated into a final gridded product.</p><p>This gridded product, and a range of altimetry datasets, offer new insights into the Baltic Sea’s mean sea level and its variability during 1995-2019. Here, we focus on the analysis of sea level trends in the region using both tide gauge and altimetry data. The Baltic SEAL absolute sea level trend at the coast better aligns with information from the in-situ stations, when compared to current global products. The rise in sea level is statistically significant in the region of study and higher in winter than in summer. A gradient of over 3 mm/yr in sea level rise is observed, with sea levels in the north and east of the basin rising more than in the south-west. Part of this gradient (about 1 mm/yr) is directly explained by a regression analysis of the wind contribution on the sea level time series. A sub-basin analysis comparing the northernmost part (Bay of Bothnia) with the south-west reveals that the differences in winter sea level anomalies are related to different phases of the North-Atlantic Oscillation (0.71 correlation coefficient). Sea level anomalies are higher in the Bay of Bothnia when winter wind forcing pushes waters through Ekman transport from the south-west towards east and north.</p><p>The study also demonstrates the maturity of enhanced satellite altimetry products to support local sea level studies in areas characterised by complex coastlines or sea-ice coverage. The processing chain used in this study can be exported to other regions, in particular to test the applicability in regions affected by larger ocean tides. We promote further exploitation and identification of further synergies with other efforts focused on relevant oceanic variables for societal applications.</p>


2021 ◽  
Author(s):  
Pedro Jiménez-Guerrero ◽  
Nuno Ratola

AbstractThe atmospheric concentration of persistent organic pollutants (and of polycyclic aromatic hydrocarbons, PAHs, in particular) is closely related to climate change and climatic fluctuations, which are likely to influence contaminant’s transport pathways and transfer processes. Predicting how climate variability alters PAHs concentrations in the atmosphere still poses an exceptional challenge. In this sense, the main objective of this contribution is to assess the relationship between the North Atlantic Oscillation (NAO) index and the mean concentration of benzo[a]pyrene (BaP, the most studied PAH congener) in a domain covering Europe, with an emphasis on the effect of regional-scale processes. A numerical simulation for a present climate period of 30 years was performed using a regional chemistry transport model with a 25 km spatial resolution (horizontal), higher than those commonly applied. The results show an important seasonal behaviour, with a remarkable spatial pattern of difference between the north and the south of the domain. In winter, higher BaP ground levels are found during the NAO+ phase for the Mediterranean basin, while the spatial pattern of this feature (higher BaP levels during NAO+ phases) moves northwards in summer. These results show deviations up to and sometimes over 100% in the BaP mean concentrations, but statistically significant signals (p<0.1) of lower changes (20–40% variations in the signal) are found for the north of the domain in winter and for the south in summer.


2016 ◽  
Vol 49 (7-8) ◽  
pp. 2451-2469 ◽  
Author(s):  
P. L. Woodworth ◽  
M. Á. Morales Maqueda ◽  
W. R. Gehrels ◽  
V. M. Roussenov ◽  
R. G. Williams ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document