scholarly journals Tidal and Physicochemical Effects on Phytoplankton Community Variability at Tagus Estuary (Portugal)

2021 ◽  
Vol 8 ◽  
Author(s):  
Rui Cereja ◽  
Vanda Brotas ◽  
Joana P. C. Cruz ◽  
Marta Rodrigues ◽  
Ana C. Brito

The Tagus Estuary is one of the largest estuaries in Europe and merges large urban and industrial areas. Understanding phytoplankton community variability is key for an appropriate assessment of the estuarine ecological status. The objective of the present study was to assess the importance of the tidal influence over the phytoplankton community and to evaluate its main drivers of variation. Weekly sampling was performed at two stations on the Tagus Estuary with different anthropogenic pressures (Alcântara and Barreiro). The sampling covered periods with different tidal amplitude. Alcântara presented both the lowest and highest concentrations of dissolved inorganic nitrogen (DIN) and orthophosphate concentration (DIP), depending on the tidal height. Such high variability in this sampling station is probably due to its proximity to a sewage treatment station outfall and to the estuary mouth. In the present study, both seasonal and tidal variations influenced the chlorophyll a concentration of which the tidal cycle explained up to 50% of the chlorophyll a variations. Chlorophyll a displayed a seasonal trend with two peaks of phytoplankton biomass between spring and mid-summer. The main drivers of chlorophyll a variation were radiation, water temperature, tidal amplitude, salinity, river discharge, and the inorganic nutrients DIN and DSi. The estuarine phytoplankton community was mainly dominated by Bacillariophyceae, especially at Alcântara. Bacillariophyceae were less important at Barreiro, where communities had a higher representation from other phytoplankton groups, such as Cryptophyceae and Prasinophyceae. The drivers of variability in the community composition were similar to those influencing the total biomass. In conclusion, the spring-neap tidal cycle strongly influenced the phytoplankton community, both in terms of biomass and community composition. Of the several tidal conditions, spring tides were the tidal condition that presented both higher biomass and higher Bacillariophyceae representativity in the community.

Diversity ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 433
Author(s):  
Yong Zhang ◽  
Jin-Zhu Su ◽  
Yu-Ping Su ◽  
Hong Lin ◽  
Yang-Chun Xu ◽  
...  

Large-scale dinoflagellate blooms have appeared in recent decades in the Taiwan Strait, Southeast China. To study spatial variability of phytoplankton community composition, physical and chemical environmental drivers in surface seawater of the Taiwan Strait, we conducted cruises in May and July 2019. Cell numbers of dinoflagellates were significantly higher than that of diatoms in most sampling stations during the cruise in May, whereas diatoms were the major contributor to autotrophic biomass in July. Phytoplankton community shifted from a dinoflagellate- and diatom-dominated system in May to diatom dominance in July. The dominant phytoplankton species (genera) were the harmful algal bloom dinoflagellates Prorocentrum donghaiense and Scrippsiella trochoidea and the diatoms Coscinodiscus in May, and Rhizosolenia, Pseudo-nitzschia, and Guinardia in July. Cell densities of dinoflagellates and P. donghaiense reduced exponentially with increasing seawater temperature and salinity and decreasing dissolved inorganic nitrogen (DIN) concentrations. Based on the results of our work and previous studies, it becomes obvious that harmful dinoflagellate blooms are likely to be a major component of the planktonic food web in the Taiwan Strait at a temperature of 17.0–23.0 °C, a salinity of 29.0–33.0 psu, and a DIN concentration higher than 2.0 μmol L–1.


Genes ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 855
Author(s):  
Mikołaj Kokociński ◽  
Dariusz Dziga ◽  
Adam Antosiak ◽  
Janne Soininen

Bacterioplankton community composition has become the center of research attention in recent years. Bacteria associated with toxic cyanobacteria blooms have attracted considerable interest. However, little is known about the environmental factors driving the bacteria community, including the impact of invasive cyanobacteria. Therefore, our aim has been to determine the relationships between heterotrophic bacteria and phytoplankton community composition across 24 Polish lakes with different contributions of cyanobacteria including the invasive species Raphidiopsis raciborskii. This analysis revealed that cyanobacteria were present in 16 lakes, while R. raciborskii occurred in 14 lakes. Our results show that bacteria communities differed between lakes dominated by cyanobacteria and lakes with minor contributions of cyanobacteria but did not differ between lakes with R. raciborskii and other lakes. Physical factors, including water and Secchi depth, were the major drivers of bacteria and phytoplankton community composition. However, in lakes dominated by cyanobacteria, bacterial community composition was also influenced by biotic factors such as the amount of R. raciborskii, chlorophyll-a and total phytoplankton biomass. Thus, our study provides novel evidence on the influence of environmental factors and R. raciborskii on lake bacteria communities.


2010 ◽  
Vol 44 (8) ◽  
pp. 2461-2472 ◽  
Author(s):  
Tammi L. Richardson ◽  
Evelyn Lawrenz ◽  
James L. Pinckney ◽  
Rodney C. Guajardo ◽  
Elyse A. Walker ◽  
...  

Author(s):  
FRÉDÉRIC A. C. LE MOIGNE ◽  
ALEX J. POULTON ◽  
STEPHANIE A. HENSON ◽  
CHRIS J. DANIELS ◽  
GLAUCIA M. FRAGOSO ◽  
...  

Hydrobiologia ◽  
2021 ◽  
Author(s):  
A.-K. Bergström ◽  
A. Deininger ◽  
A. Jonsson ◽  
J. Karlsson ◽  
T. Vrede

AbstractWe used data from whole-lake studies to assess how changes in food quantity (phytoplankton biomass) and quality (phytoplankton community composition, seston C:P and N:P) with N fertilization affect zooplankton biomass, community composition and C:N:P stoichiometry, and their N:P recycling ratio along a gradient in lake DOC concentrations. We found that despite major differences in phytoplankton biomass with DOC (unimodal distributions, especially with N fertilization), no major differences in zooplankton biomass were detectable. Instead, phytoplankton to zooplankton biomass ratios were high, especially at intermediate DOC and after N fertilization, implying low trophic transfer efficiencies. An explanation for the observed low phytoplankton resource use, and biomass responses in zooplankton, was dominance of colony forming chlorophytes of reduced edibility at intermediate lake DOC, combined with reduced phytoplankton mineral quality (enhanced seston N:P) with N fertilization. N fertilization, however, increased zooplankton N:P recycling ratios, with largest impact at low DOC where phytoplankton benefitted from light sufficiently to cause enhanced seston N:P. Our results suggest that although N enrichment and increased phytoplankton biomass do not necessarily increase zooplankton biomass, bottom-up effects may still impact zooplankton and their N:P recycling ratio through promotion of phytoplankton species of low edibility and altered mineral quality.


Water ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 222 ◽  
Author(s):  
Mary Lofton ◽  
Ryan McClure ◽  
Shengyang Chen ◽  
John Little ◽  
Cayelan Carey

Water column mixing can influence community composition of pelagic phytoplankton in lakes and reservoirs. Previous studies suggest that low mixing favors cyanobacteria, while increased mixing favors green algae and diatoms. However, this shift in community dominance is not consistently achieved when epilimnetic mixers are activated at the whole-ecosystem scale, possibly because phytoplankton community responses are mediated by mixing effects on other ecosystem processes. We conducted two epilimnetic mixing experiments in a small drinking water reservoir using a bubble-plume diffuser system. We measured physical, chemical, and biological variables before, during, and after mixing and compared the results to an unmixed reference reservoir. We observed significant increases in the biomass of cyanobacteria (from 0.8 ± 0.2 to 2.4 ± 1.1 μg L−1, p = 0.008), cryptophytes (from 0.7 ± 0.1 to 1.9 ± 0.6 μg L−1, p = 0.003), and green algae (from 3.8 to 4.4 μg L−1, p = 0.15) after our first mixing event, likely due to increased total phosphorus from entrainment of upstream sediments. After the second mixing event, phytoplankton biomass did not change but phytoplankton community composition shifted from taxa with filamentous morphology to smaller, rounder taxa. Our results suggest that whole-ecosystem dynamics and phytoplankton morphological traits should be considered when predicting phytoplankton community responses to epilimnetic mixing.


2020 ◽  
Vol 47 (14) ◽  
Author(s):  
I. Wiedmann ◽  
E. Ceballos‐Romero ◽  
M. Villa‐Alfageme ◽  
A. H. H. Renner ◽  
C. Dybwad ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document