scholarly journals A Simple Approach to Atomic Structure Characterization for Machine Learning of Grain Boundary Structure-Property Models

2019 ◽  
Vol 6 ◽  
Author(s):  
Brandon D. Snow ◽  
Dustin D. Doty ◽  
Oliver K. Johnson
1994 ◽  
Vol 357 ◽  
Author(s):  
M.M. McGibbon ◽  
N.D. Browning ◽  
A.J. McGibbon ◽  
M.F. Chisholm ◽  
S.J. Pennycook

AbstractIn the electroceramic SrTiO3 the grain boundary atomic structure governs a variety of electrical properties such as non-linear I-V characteristics. An understanding of this atomic structure-property relationship for individual grain boundaries requires a technique which probes both composition and chemical bonding on an atomic scale. Atomic structure models for [001] tilt boundaries in SrTiO3 bicrystals have been determined directly from experimental data, by combining high-resolution Z-contrast imaging to locate the cation columns at the boundary, with simultaneous electron energy loss spectroscopy to examine light element coordination at atomic resolution. In this paper we compare and contrast the grain boundary structure models of symmetric and asymmetric boundaries in SrTiO3.


2015 ◽  
Vol 50 (21) ◽  
pp. 6907-6919 ◽  
Author(s):  
Oliver K. Johnson ◽  
Lin Li ◽  
Michael J. Demkowicz ◽  
Christopher A. Schuh

Author(s):  
C. C. Chu ◽  
F.-R. Chen ◽  
C.-Y. Wang ◽  
L. Chang

In the past, extensive high resolution electron microscopy has been applied to the atomic structure of grain boundaries of cubic symmetry. In order to have a better understanding of generalization of the grain boundary theory, it could be fruiful to study grain boundary structure of non-cubic and low symmetry crystals in which case the exact CSL’s may not exist. Al2O3 has a hexagonal crystal structure ( non-cubic). In the case of hexagonal crystals, three dimensional coincidence site lattices (CSL’s) are only possible for rational values of (c/a), except for rotations about the [0001] axis. The (c/a) of α-Al2O3 is very close to a rational number (15/2) such that constrained coincidence-site lattice (CCSL) misorientations can be found. In this research, we study the atomic structure of Σ7 grain boundary. The misonentation of Σ7 is [011]/180°. The bicrystals of Σ7 were made by diffusion bonding in high temperature and high vacuum.Figs. 1 (a) and (b). show typical HRTEM images of Σ7 Al2O3 boundary recorded at the underfocus values -48 nm and -96 nm, respectively. The beam direction is parallel to a common axis [20].


2021 ◽  
pp. 116769
Author(s):  
Brandon D. Snow ◽  
Sterling G. Baird ◽  
Christian Kurniawan ◽  
David T. Fullwood ◽  
Eric R. Homer ◽  
...  

2019 ◽  
Vol 55 (4) ◽  
pp. 1562-1576
Author(s):  
Christian Kurniawan ◽  
Sterling Baird ◽  
David T. Fullwood ◽  
Eric R. Homer ◽  
Oliver K. Johnson

2007 ◽  
Vol 561-565 ◽  
pp. 1837-1840 ◽  
Author(s):  
Y. Inoue ◽  
Tokuteru Uesugi ◽  
Yorinobu Takigawa ◽  
Kenji Higashi

The grain boundary structure and its energy are necessary for the fundamental understanding of the physical properties of materials. In aluminum, three distinct atomic structures of a Σ9(221)[110] tilt grain boundary have been reported in previous studies using atomistic simulations and a high-resolution transmission electron microscopy (HRTEM). In this work, we studied the atomic structure and energy of the Σ9 tilt grain boundary in aluminum using first-principles calculations. A comparison of the grain boundary energies among the three distinct Σ9 tilt grain boundaries determined through first-principles calculations allowed us to identify the most stable atomic structure of Σ9 tilt grain boundary in aluminum.


Author(s):  
P. Humble

There has been sustained interest over the last few years into both the intrinsic (primary and secondary) structure of grain boundaries and the extrinsic structure e.g. the interaction of matrix dislocations with the boundary. Most of the investigations carried out by electron microscopy have involved only the use of information contained in the transmitted image (bright field, dark field, weak beam etc.). Whilst these imaging modes are appropriate to the cases of relatively coarse intrinsic or extrinsic grain boundary dislocation structures, it is apparent that in principle (and indeed in practice, e.g. (1)-(3)) the diffraction patterns from the boundary can give extra independent information about the fine scale periodic intrinsic structure of the boundary.In this paper I shall describe one investigation into each type of structure using the appropriate method of obtaining the necessary information which has been carried out recently at Tribophysics.


Author(s):  
Brian Ralph ◽  
Barlow Claire ◽  
Nicola Ecob

This brief review seeks to summarize some of the main property changes which may be induced by altering the grain structure of materials. Where appropriate an interpretation is given of these changes in terms of current theories of grain boundary structure, and some examples from current studies are presented at the end of this paper.


1975 ◽  
Vol 36 (C4) ◽  
pp. C4-17-C4-22 ◽  
Author(s):  
R. W. BALLUFFI ◽  
P. J. GOODHEW ◽  
T. Y. TAN ◽  
W. R. WAGNER

Sign in / Sign up

Export Citation Format

Share Document