Direct Determination of Grain Boundary Atomic Structure in SrTiO3

1994 ◽  
Vol 357 ◽  
Author(s):  
M.M. McGibbon ◽  
N.D. Browning ◽  
A.J. McGibbon ◽  
M.F. Chisholm ◽  
S.J. Pennycook

AbstractIn the electroceramic SrTiO3 the grain boundary atomic structure governs a variety of electrical properties such as non-linear I-V characteristics. An understanding of this atomic structure-property relationship for individual grain boundaries requires a technique which probes both composition and chemical bonding on an atomic scale. Atomic structure models for [001] tilt boundaries in SrTiO3 bicrystals have been determined directly from experimental data, by combining high-resolution Z-contrast imaging to locate the cation columns at the boundary, with simultaneous electron energy loss spectroscopy to examine light element coordination at atomic resolution. In this paper we compare and contrast the grain boundary structure models of symmetric and asymmetric boundaries in SrTiO3.

2001 ◽  
Vol 7 (S2) ◽  
pp. 400-401
Author(s):  
Y. Lei ◽  
Y. Ito ◽  
N. D. Browning

Yttria-stabilized zirconia (YSZ) has been the subject of many experimental and theoretical studies, due to the commercial applications of zirconia-based ceramics in solid state oxide fuel cells. Since the grain boundaries usually dominate the overall macroscopic performance of the bulk material, it is essential to develop a fundamental understanding of their structure-property relationships. Previous research has been performed on the atomic structure of grain boundaries in YSZ, but no precise atomic scale compositional and chemistry characterization has been carried out. Here we report a detailed analytical study of an [001] symmetric 24° bicrystal tilt grain boundary in YSZ prepared with ∼10 mol % Y2O3 by Shinkosha Co., Ltd by the combination of Z-contrast imaging and electron energy loss spectroscopy (EELS).The experimental analysis of the YSZ sample was carried out on a 200kV Schottky field emission JEOL 201 OF STEM/TEM4.


2015 ◽  
Vol 50 (21) ◽  
pp. 6907-6919 ◽  
Author(s):  
Oliver K. Johnson ◽  
Lin Li ◽  
Michael J. Demkowicz ◽  
Christopher A. Schuh

1993 ◽  
Vol 319 ◽  
Author(s):  
M.M. Mcgibbon ◽  
N.D. Browning ◽  
M.F. Chisholm ◽  
S.J. Pennycook ◽  
V. Ravikumar ◽  
...  

AbstractThe macroscopic properties of many materials are controlled by the structure and chemistry at grain boundaries. A basic understanding of the structure-property relationship requires a technique which probes both composition and chemical bonding on an atomic scale. The high-resolution Z-contrast imaging technique in the scanning transmission electron microscope (STEM) forms an incoherent image in which changes in atomic structure and composition can be interpreted intuitively. This direct image allows the electron probe to be positioned over individual atomic columns for parallel detection electron energy loss spectroscopy (EELS) at a spatial resolution approaching 0.22nm. In this paper we have combined the structural information available in the Z-contrast images with the bonding information obtained from the fine structure within the EELS edges to determine the grain boundary structure in a SrTiO3 bicrystal.


1997 ◽  
Vol 3 (S2) ◽  
pp. 549-550
Author(s):  
H. Gu ◽  
F. Wakai

Y or Ca stabilized tetragonal ZrO2 (TZP) exhibits superplasticity at high temperature, and can also be used as solid electrolytes. Those properties are dictated by structure and chemistry of grain boundaries, which can be controlled by segregation of impurities or additives. The grain boundaries were found either covered by amorphous films or free of the film. Co-segragation of additives and stabilizers has also been observed. To fully understand the correlation between segregation and grain boundary structure, a dedicated STEM (VG HB601) capable of EDX/EELS analysis and phase/Z-contrast imaging is employed to study 3Y-TZP doped with 0.3 and 0.9 mol% SiO2.Although Y-L lines arc dominated by overlapping Zr-L lines in EDX, Y excess at grain boundaries can still be measured by “spatial difference” which removes Zr signal with a spectrum from the bulk. The co-segregation of Si and Y is also observed (Fig. 1) at many boundaries. Their average excesses arc 5±2 nm−2and 25±10 run−2 respectively, close to 1 monolayer each of SiO2 and Y2O3.


1990 ◽  
Vol 209 ◽  
Author(s):  
Qing Ma ◽  
R. W. Balluffi

ABSTRACTGrain boundary chemical diffusivities for a series of symmetric [001] tilt boundaries in the Au/Ag system were measured by the surface accumulation method using newly developed thin-film multi-crystal specimens, in which the grain boundaries feeding the accumulation surface were all of the same type. Possible effects due to segregation at the grain boundaries and surfaces were avoided. CSL boundaries of low-Σ ( i.e., 5, 13, 17, 25) and also more general boundaries with tilt angles between the low-Σ orientations were selected. The diffusivities were found to vary monotonically with tilt angle ( i.e., no cusps at low-Σ's were found) in a manner consistent with the Structural Unit model.


1985 ◽  
Vol 63 ◽  
Author(s):  
J. T. Wetzel ◽  
A. A. Levi ◽  
D. A. Smith

ABSTRACTThe dependence of the structure of (210) and (310) symmetrical [001] tilt boundaries in silicon, germanium and diamond on the Keating covalent force field (potential) has been investigated by computer modelling. We have found that the sensitivity of grain boundary structure to variations of the Keating potential depends on the local atomic arrangement at the grain boundary.


Sign in / Sign up

Export Citation Format

Share Document