scholarly journals Rutting Performance of Semi-Rigid Base Pavement in RIOHTrack and Laboratory Evaluation

2021 ◽  
Vol 7 ◽  
Author(s):  
Sheng Li ◽  
Mengmeng Fan ◽  
Lukai Xu ◽  
Wendi Tian ◽  
Huanan Yu ◽  
...  

Through a simple performance dynamic modulus test (SPT), standard rutting test, Hamburg rutting test, French rutting test and asphalt pavement analyzer rutting test, the rutting resistance of asphalt mixtures in the middle and lower courses of three semi-rigid base asphalt pavement of Beijing full-scale test track road in China was evaluated. The test results show that the rutting resistance of asphalt mixtures of the middle and lower courses can be greatly improved by using low-grade asphalt, especially 30# asphalt. The rutting resistance of SBS modified asphalt mixtures is also better. The SPT dynamic modulus test can indirectly characterize the rutting performance of the asphalt mixture. The rutting test results of a laser road detection vehicle and 3 m ruler show that the asphalt grade has a significant impact on the rutting performance of semi-rigid base asphalt pavement. Compared with 70# asphalt used in the middle and lower courses, the rutting resistance of the pavement structure can be improved by more than 20%. The result also show that the APA rutting test results can closely characterize the full-scale test track results, which is an optimal test method for evaluating the rutting performance of semi-rigid base asphalt pavement. The research results can provide a theoretical basis and reference for the rational design and rutting evaluation of semi-rigid base asphalt pavement.

2011 ◽  
Vol 261-263 ◽  
pp. 824-828 ◽  
Author(s):  
Qian Zhang ◽  
Shu Wei Goh ◽  
Zhan Ping You

The objective of this study is to investigate the possibility of using waste plastic as an additive to modify asphalt mixtures thereby reducing the waste plastic stream in our environment. High density polyethylene plastic bags obtained from the retail store were shredded into chips and added into asphalt mixtures at the rate of 0% (control sample), 2, 5 and 8% based on binder weight. Three different temperatures of 4, 21.3 and 39.2°C and frequencies ranging from 0.1 to 25 Hz were used in the dynamic modulus test. It was found that most of the asphalt mixtures modified with waste plastic have higher dynamic modulus when compared with the control samples. However, no significant trend on phase angle was found among all the samples tested based on the test results. In this study, it was found that the modified asphalt mixture with 2% waste plastic had the highest dynamic modulus and phase angle. Based on the test results, it was found that plastic modified asphalt mixture will have a better performance under intermediate and high temperature conditions.


2016 ◽  
Vol 43 (4) ◽  
pp. 343-350 ◽  
Author(s):  
Xuan Dai Lu ◽  
Mofreh Saleh

Using reclaimed asphalt pavement (RAP) increases the sustainability benefits and can enhance the performance of warm mix asphalt (WMA) compared to traditional hot mix asphalt (HMA). However, the RAP content is generally limited in WMA because adding high RAP content may reduce the performance of WMA. In this paper, the authors studied the possibility of incorporating high RAP content from 25 to 70% by mass of WMA by using Evotherm as an additive. Laboratory performance of WMA–RAP mixtures was characterized and compared to a control HMA in terms of moisture susceptibility, rutting resistance, and fatigue characterization. Test results showed that Evotherm greatly improved the moisture resistance of WMA–RAP mixtures compared to HMA. Increasing RAP content made WMA–RAP mixtures stiffer and enhanced the rutting resistance, but decreased the fatigue resistance of the mixtures. Therefore, the maximum RAP content needs to be determined to ensure balance between the fatigue and rutting characteristics of asphalt mixtures.


1992 ◽  
Vol 35 (3) ◽  
pp. 977-985 ◽  
Author(s):  
K. G. Gebremedhin ◽  
J. A. Bartsch ◽  
M. C. Jorgensen

2019 ◽  
Vol 282 ◽  
pp. 02015
Author(s):  
Stéphanie Van Linden ◽  
Nathan Van Den Bossche

Watertightness is still a major source of concern in the performance of the building envelope. Even very small deficiencies can cause a significant amount of water leakage which may result in structural degradation or malfunctioning of the insulation. The risk of water infiltration is highest at joints between different building components and in particular at the window-wall interface due to the complexity of these joints. This paper focuses on the performance of different solutions to ensure the watertightness of the window-wall interface, e.g. self-adhesive foils, liquid applied coatings, prefabricated frames, self-expanding sealing strips. The performance of these solutions is evaluated for different wall assemblies, i.e. ETICS, masonry, structural insulated panels and wood-frame construction. Laboratory experiments were conducted on a full-scale test setup with a window of 1,01 m high and 0,56 m wide. Test results showed that it is not evident to obtain watertight face-sealed window-wall interfaces without an additional airtight layer or drainage possibilities. Water ingress was often recorded at lower pressure differences.


2014 ◽  
Vol 599 ◽  
pp. 244-247 ◽  
Author(s):  
Qun Shan Ye ◽  
Chang Jian Ye ◽  
Zhi Lin Sun

Viscosity test, dynamic shear test, dynamic modulus test and creep test were conducted to investigate the rheological properties of high modulus asphalt and its mixture. Test results indicated that the viscosity of hard grade asphalt could be increased when compared with the ordinary asphalt, especially at high temperatures. The complex shear modulus and dynamic modulus of hard-grade asphalt binder and its mixture were increased, which implied that the stiffness of them was enhanced. Furthermore, the elastically portions for viscoelastic property of asphalt binders were increased, which resulted in the reduction of phase angle for hard grade asphalt binders and mixtures. The rutting parameter for hard-grade asphalt mixture was increased remarkably, which revealed that the resistance to permanent deformation could be significantly improved for hard grade asphalt mixture.


2014 ◽  
Vol 505-506 ◽  
pp. 15-18 ◽  
Author(s):  
Xiao Long Zou ◽  
Ai Min Sha ◽  
Wei Jiang ◽  
Xin Yan Huang

In order to analyze the characteristics of high modulus asphalt mixture dynamic modulus, Universal Testing Machine (UTM-25) was used for dynamic modulus test of three kinds of mixtures, which were PR Module modified asphalt mixture and PR PLAST.S modified asphalt mixture and virgin asphalt mixture, to investigate dynamic modulus and phase angle at different temperatures and frequencies. The results indicate that: the dynamic modulus order of the three asphalt mixtures is PR MODULE > PR PLAST.S > Virgin. PR MODULE asphalt mixture dynamic modulus is much larger than the other two.


Author(s):  
Jo Sias Daniel ◽  
Aaron Lachance

This research examines how the addition of recycled asphalt pavement (RAP) changes the volumetric and mechanistic properties of asphalt mixtures. A Superpave® 19-mm mixture containing 0% RAP was the control for evaluating properties of mixes containing 15%, 25%, and 40% RAP. Two types of RAP were evaluated: a processed RAP and an unprocessed RAP (grindings). Testing included dynamic modulus in tension and compression, creep compliance in compression, and creep flow in compression. Dynamic modulus and creep compliance master curves were constructed with the use of the time–temperature superposition principle to describe the behavior of each mix over a range of temperatures. The voids in mineral aggregate (VMA) and voids filled with asphalt (VFA) of the RAP mixtures increased at the 25% and 40% levels, and there was also an influence of preheating time on the volumetric properties. The dynamic modulus of the processed RAP mixtures increased from the control to 15% RAP level, but the 25% and 40% RAP mixtures had dynamic modulus curves similar to that of the control mixture in both tension and compression. The creep compliance curves showed similar trends. A combination of gradation, asphalt content, and volumetric properties is likely the cause of these trends.


Sign in / Sign up

Export Citation Format

Share Document