scholarly journals Effects of Radiation sterilization Dose on the Molecular Weight and Gelling Properties of Commercial Alginate Samples

2021 ◽  
Vol 8 ◽  
Author(s):  
M. Z. I. Mollah ◽  
M S. Rahaman ◽  
M R I. Faruque ◽  
M U. Khandaker ◽  
Hamid Osman ◽  
...  

To estimate the molecular weight (Mw) and gelling properties, a total of 26 alginate samples consisting of control (n = 13) and 15 kGy γ-irradiated (n = 13) samples were characterized through viscometric and gel permeation chromatography (GPC-MALLS) methods. Based on the observations, a remarkable decrease in the intrinsic viscosity of all samples of alginates was evident due to the effects of radiation, with a linear relationship between viscosity and concentration in 0.01 M NaCl solution. The correlation among the Mw, percentage mass recovery, radii of gyration (Rz/Rg), and percentage reduction of Mw assessed by GPC was significant. The Mw decreased dramatically (from 3.1 × 105 to 0.49 × 105 mole/g in sample no. 12) by the effect of radiation with momentous relation to the % reduction of the molecular weight. The highest molecular weight reduction (84%), which is the most sensitive to γ-radiation, and the average reduction rate was ≥50%. The mass recovery was 100% obtained from samples no. 1,3,4,5,7,12, and 13, while the rest of the samples’ recovery rate was significantly higher. The reduction rate of mass molecular weight (Mw) is higher than the average molecular weight (Mv), but they showed a sensitivity towards radiation, consequently their performance are different from each other. The stability test was performed as a critical behaviour in the control, recurrently same as in the irradiated samples. Thus, the sterilization dose of 15 kGy for the Mw distribution, and subsequently for the characterization, was significantly effective.

TAPPI Journal ◽  
2021 ◽  
Vol 20 (6) ◽  
pp. 381-391
Author(s):  
JULIANA M. JARDIM ◽  
PETER W. HART ◽  
LUCIAN LUCIA ◽  
HASAN JAMEEL

The present investigation undertook a systematic investigation of the molecular weight (MW) of kraft lignins throughout the pulping process to establish a correlation between MW and lignin recovery at different extents of the kraft pulping process. The evaluation of MW is crucial for lignin characterization and utilization, since it is known to influence the kinetics of lignin reactivity and its resultant physicochemical properties. Sweetgum and pine lignins precipitated from black liquor at different pHs (9.5 and 2.5) and different extents of kraft pulping (30–150 min) were the subject of this effort. Gel permeation chromatography (GPC) was used to deter- mine the number average molecular weight (Mn), mass average molecular weight (Mw), and polydispersity of the lignin samples. It was shown that the MW of lignins from both feedstocks follow gel degradation theory; that is, at the onset of the kraft pulping process low molecular weightlignins were obtained, and as pulping progressed, the molecular weight peaked and subsequently decreased. An important finding was that acetobromination was shown to be a more effective derivatization technique for carbohydrates containing lignins than acetylation, the technique typically used for derivatization of lignin.


BioResources ◽  
2015 ◽  
Vol 10 (3) ◽  
pp. 4137-4151 ◽  
Author(s):  
Aikfei Ang ◽  
Zaidon Ashaari ◽  
Edi Suhaimi Bakar ◽  
Nor Azowa Ibrahim

An alkali lignin (OL) with a weight-average molecular weight (Mw) of 11646 g/mol was used to prepare low-molecular weight lignin for resin synthesis. The low-molecular weight lignin feedstock was obtained via base-catalysed depolymerisation (BCD) treatments at different combined severity factors. Sequential fractionation of the OL and BCD-treated lignins using organic solvents with different Hildebrand solubility parameters were used to alter the homogeneity of the OL. The yield and properties of OL itself and OL and BCD-treated OL dissolved in propan-1-ol (F1), ethanol (F2), and methanol (F3) were determined. Regardless of the treatment applied, a small amount of OL was dissolved in F1 and F2. The BCD treatment did not increase the yield of F1 but did increase the yields of F2 and F3. Gel permeation chromatography (GPC) showed that the repolymerization reaction occurred in F3 for all BCD-treated OL, so these lignins were not suitable for use as feedstocks for resin production. The GPC, 13Carbon-nuclear magnetic resonance, and Fourier transform infrared spectroscopy analyses confirmed that the F3 in OL exhibited the optimum yield, molecular weight distribution, and chemical structure suitable for use as feedstocks for resin synthesis.


Bone ◽  
2013 ◽  
Vol 57 (1) ◽  
pp. 194-200 ◽  
Author(s):  
Huynh Nguyen ◽  
Alan I. Cassady ◽  
Michael B. Bennett ◽  
Evelyne Gineyts ◽  
Andy Wu ◽  
...  

1976 ◽  
Vol 49 (5) ◽  
pp. 1290-1304
Author(s):  
M. Kurata ◽  
H. Okamoto ◽  
M. Iwama ◽  
M. Abe ◽  
T. Homma

Abstract An iterative computer method was proposed for estimating the degree of branching and molecular weight distribution simultaneously from a pair of measurements on intrinsic viscosity and gel-permeation chromatography. The validity of the method as applied to randomly branched polymers was tested by using both fractionated and unfractionated samples of branched polystyrenes. It was experimentally concluded that the average number of branch points per unit molecular weight, λ, can be determined by this method with an accuracy of about 15%, and the weight-average molecular weight with accuracy of about 10%.


2011 ◽  
Vol 179-180 ◽  
pp. 1203-1207
Author(s):  
Zheng Zai Cheng ◽  
Yu Jing Nie ◽  
Xiao Chao Yan ◽  
Rui Lei ◽  
Su Su Lin

Novel titanium complex [2-O-(5- NO2)C6H3CH=N[(C6H4) –2-O ]]2TiCl2 (1) has been prepared by treatment of the ligand complex 1a with TiCl4•2THF in dichloromethane solution. The complex 1a and 1 were characterized by 1H-NMR . Activated by MAO, Complex 1 displayed very high activity for methyl methacrylate polymerization and the viscosity-average molecular weight of PMMA is more than 35×104 at 60°C.The molecular-weight distribution of PMMA measured by gel permeation chromatography (GPC) is narrow.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
N. Ugur Kaya ◽  
Y. Avcibasi Guvenilir

Poly(ε-caprolactone) (PCL) macromonomers comprising acrylate end-functionality were synthesized via enzymatic ring-opening polymerization (eROP) by utilizing commercially availableCandida antarcticaLipase B (CALB), Novozyme-435. 2-Hydroxyethyl methacrylate (HEMA) was purposed to be the nucleophilic initiator in eROP. The side reactions generated due to the cleavage of ester bonds in HEMA and the growing polymer chains were investigated through altering polymerization period, initiator concentration, temperature, and enzyme concentration.1H NMR evaluations showed that minimum quantities of side reactions were in lower temperatures, initiator concentration, enzyme concentration, and lower monomer conversions. Gel permeation chromatography (GPC) results revealed that lower polydispersity along with number-average molecular weight of end-functionalized PCL macromonomers was obtained depending on higher initiator/monomer ratios, lower temperature (60°C), enzyme concentration (100 mg), and/or polymerization time (2 h). Furthermore, 0.1 HEMA/ε-caprolactone (CL) ratio had higher molecular weight than 0.5 HEMA/CL ratio, while keeping a close value of methacrylate transfer, total methacrylate end-groups, and lower polyester transfer.


2016 ◽  
Vol 49 (5) ◽  
pp. 408-421 ◽  
Author(s):  
Jieting Geng ◽  
Youguo Shao ◽  
Feng Song ◽  
Feng Li ◽  
Jing Hua

Coordination polymerization of styrene (St) using molybdenum pentachloride supported by phosphite ligand in the presence of metal organic compound was studied for the first time. The types of phosphite and co-catalysts significantly affected the catalytic activity of the molybdenum (V) (Mo(V)) active center and the number-average molecular weight ( Mn) of the resultant polymer. Among the examined catalysts, tri(nonylphenyl)phosphite (TNPP) ligand and AlOPhCH3( i-Bu)2 as co-catalyst provided the polymer with highest yield (up to 87.1%), metallocene as co-catalyst provided the polymer with highest Mn (up to 5.32 × 105). The effect of [P]/[Mo] molar ratio on catalyst activity of the polymerization was discussed and the structures of Mo·TNPP complexes were preliminarily studied by infrared (IR) and ultraviolet spectroscopies. Besides, the polystyrene (PS) samples synthesized through bulk polymerization and solution polymerization were characterized by gel permeation chromatography, IR, carbon 13 nuclear magnetic resonance, and differential scanning calorimetry, respectively, and the results indicated both of the PS had high molecular weight (approximately 105) and atactic structure. All these results demonstrated that Mo(V) catalyst system was very effective for St polymerization.


Sign in / Sign up

Export Citation Format

Share Document