scholarly journals Identification and Characterization of Novel Compounds Blocking Shiga Toxin Expression in Escherichia coli O157:H7

2016 ◽  
Vol 7 ◽  
Author(s):  
Alejandro Huerta-Uribe ◽  
Zoe R. Marjenberg ◽  
Nao Yamaguchi ◽  
Stephen Fitzgerald ◽  
James P. R. Connolly ◽  
...  
2004 ◽  
Vol 53 (10) ◽  
pp. 1037-1043 ◽  
Author(s):  
Hideki Nagano ◽  
Takashi Hirochi ◽  
Kozo Fujita ◽  
Yoshihiro Wakamori ◽  
Koichi Takeshi ◽  
...  

2015 ◽  
Vol 53 (9) ◽  
pp. 3035-3038 ◽  
Author(s):  
Ryuji Kawahara ◽  
Kazuko Seto ◽  
Masumi Taguchi ◽  
Chie Nakajima ◽  
Yuko Kumeda ◽  
...  

We isolated Shiga toxin-producingEscherichia coliO157:H7 strains resistant to third-generation cephalosporins. The resistant strains harboredblaCMY-2, a plasmid-mediated AmpC β-lactamase. Genotyping of isolates revealed the possible spread of this problematic bacterium. Results suggested the importance of the investigation and surveillance of enterobacteria with plasmids harboringblaCMY-2.


2003 ◽  
Vol 41 (5) ◽  
pp. 2106-2112 ◽  
Author(s):  
C. Burk ◽  
R. Dietrich ◽  
G. Acar ◽  
M. Moravek ◽  
M. Bulte ◽  
...  

1998 ◽  
Vol 36 (7) ◽  
pp. 2135-2137 ◽  
Author(s):  
Martina Bielaszewska ◽  
Herbert Schmidt ◽  
Mohamed A. Karmali ◽  
Rasik Khakhria ◽  
Jan Janda ◽  
...  

Two sorbitol-fermenting (SF) Shiga toxin-producingEscherichia coli (STEC) O157:H− strains were isolated from patients with hemolytic-uremic syndrome in the Czech Republic in 1995. Their phenotypic and genotypic characteristics and genomic DNA fingerprints were identical or closely related to those of SF STEC O157:H− strains isolated in Germany in 1988 to 1997. This indicates that the Czech isolates belong to the SF STEC O157 clone which is widespread in Germany. It is the first finding of the clone outside Germany.


2020 ◽  
Vol 83 (11) ◽  
pp. 1909-1917
Author(s):  
SAIDA ESSENDOUBI ◽  
XIANQIN YANG ◽  
ROBIN KING ◽  
JULIA KEENLISIDE ◽  
JAVIER BAHAMON ◽  
...  

ABSTRACT The objective of this study was to determine the prevalence of Shiga toxin–producing Escherichia coli (STEC) O157:H7 in colon contents and on carcasses from pigs slaughtered at provincially licensed abattoirs (PLAs) in Alberta, Canada. In 2017, carcass sponge samples and colon content samples were collected from 504 healthy market hogs at 39 PLAs and analyzed for E. coli O157:H7. Carcass samples were also analyzed for E. coli and aerobic colony count (ACC). Nine (1.8%) of 504 carcass samples were confirmed positive for E. coli O157:H7. Seven (1.4%) of 504 colon content samples were confirmed positive for E. coli O157:H7. These positives were found in 5 (12.8%) of 39 PLAs from hogs originating from eight farms. The E. coli O157:H7 isolates recovered from the positive samples (n = 1 isolate per sample) were clonal, as determined by pulsed-field gel electrophoresis. Six E. coli O157:H7 isolates obtained over 8 months from one PLA that only processed hogs and sourced hogs from one farm had indistinguishable pulsed-field gel electrophoresis patterns. All 16 E. coli O157:H7 isolates harbored eae and ehxA and were of stx2a subtype, suggesting that swine can carry E. coli O157:H7 of importance to human health. All carcass sponge swabs (100%) were positive for ACC. E. coli was present in 72% of carcass swabs. Carcasses from PLAs slaughtering both beef and hogs had a numerically higher ACC mean value but not statistically different compared with the carcasses from PLAs slaughtering only swine (2,799 and 610 CFU/cm2, respectively). E. coli showed a similar trend with a mean value of 0.88 CFU/cm2 in PLAs slaughtering both species and 0.26 CFU/cm2 in PLAs slaughtering only swine (P ≤ 0.05). This study provides evidence that healthy market hogs from different producers and farms in Alberta can carry E. coli O157:H7, and some strains of the organism may be able to establish persistence on some swine farms. HIGHLIGHTS


Food Control ◽  
2015 ◽  
Vol 50 ◽  
pp. 209-214 ◽  
Author(s):  
Li Bai ◽  
Yunchang Guo ◽  
Ruiting Lan ◽  
Yinping Dong ◽  
Wei Wang ◽  
...  

2008 ◽  
Vol 74 (18) ◽  
pp. 5645-5652 ◽  
Author(s):  
Jie Zheng ◽  
Shenghui Cui ◽  
Louise D. Teel ◽  
Shaohua Zhao ◽  
Ruby Singh ◽  
...  

ABSTRACT There is considerable heterogeneity among the Shiga toxin type 2 (Stx2) toxins elaborated by Shiga toxin-producing Escherichia coli (STEC). One such Stx2 variant, the Stx2d mucus-activatable toxin (Stx2dact), is rendered more toxic by the action of elastase present in intestinal mucus, which cleaves the last two amino acids of the A2 portion of the toxin A subunit. We screened 153 STEC isolates from food, animals, and humans for the gene encoding Stx2dact by using a novel one-step PCR procedure. This method targeted the region of stx 2dact that encodes the elastase recognition site. The presence of stx 2dact was confirmed by DNA sequencing of the complete toxin genes. Seven STEC isolates from cows (four isolates), meat (two isolates), and a human (one isolate) that carried the putative stx 2dact gene were identified; all were eae negative, and none was the O157:H7 serotype. Three of the isolates (CVM9322, CVM9557, and CVM9584) also carried stx 1, two (P1332 and P1334) carried stx 1 and stx 2c, and one (CL-15) carried stx 2c. One isolate, P1130, harbored only stx 2dact. The Vero cell cytotoxicities of supernatants from P1130 and stx 1 deletion mutants of CVM9322, CVM9557, and CVM9584 were increased 13- to 30-fold after treatment with porcine elastase. Thus, Stx2dact-producing strains, as detected by our one-step PCR method, can be isolated not only from humans, as previously documented, but also from food and animals. The latter finding has important public health implications based on a recent report from Europe of a link between disease severity and infection with STEC isolates that produce Stx2dact.


Sign in / Sign up

Export Citation Format

Share Document