intestinal mucus
Recently Published Documents


TOTAL DOCUMENTS

377
(FIVE YEARS 87)

H-INDEX

60
(FIVE YEARS 7)

Author(s):  
Lizhen Zhu ◽  
Beiping Miao ◽  
Dagmara Dymerska ◽  
Magdalena Kuświk ◽  
Elena Bueno-Martínez ◽  
...  

Familial colorectal cancer (CRC) is only partially explained by known germline predisposing genes. We performed whole genome sequencing in 15 Polish families of many affected individuals, without mutations in known CRC predisposing genes. We focused on loss-of-function variants and functionally characterized them. We identified a frameshift variant in the CYBA gene (c.246delC) in one family and a splice site variant in the TRPM4 gene (c.25-1 G>T) in another family. While both variants were absent or extremely rare in gene variant databases, we identified four additional Polish familial CRC cases and two healthy elderly individuals with the CYBA variant (odds ratio 2.46, 95% confidence interval 0.48-12.69). Both variants led to a premature stop codon and to a truncated protein. Functional characterization of the variants showed that knockdown of CYBA or TRPM4 depressed generation of reactive oxygen species (ROS) in LS174T and HT-29 cell lines. Knockdown of TRPM4 resulted in decreased MUC2 protein production. CYBA encodes a component in the NADPH oxidase system which generates ROS and controls, e.g., bacterial colonization in the gut. Germline CYBA variants are associated with early onset inflammatory bowel disease, supported with experimental evidence on loss of intestinal mucus barrier function due to ROS deficiency. TRPM4 encodes a calcium-activated ion channel, which in a human colonic cancer cell line controls calcium-mediated secretion of MUC2, a major component of intestinal mucus barrier. We suggest that the gene defects in CYBA and TRPM4 mechanistically involve intestinal barrier integrity through ROS and mucus biology, which converges in chronic bowel inflammation.


PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0261191
Author(s):  
Janneke Elzinga ◽  
Benthe van der Lugt ◽  
Clara Belzer ◽  
Wilma T. Steegenga

The intestinal mucus layer plays a crucial role in human health. To study intestinal mucus function and structure in vitro, the mucus-producing intestinal cell line HT29-MTX-E12 has been commonly used. However, this cell line produces only low amounts of the intestine-specific MUC2. It has been shown previously that HT29-MTX-E12 cells cultured under Semi-Wet interface with Mechanical Stimulation (SWMS) produced higher amounts of MUC2, concomitant with a thicker mucus layer, compared to cells cultured conventionally. However, it remains unknown which underlying pathways are involved. Therefore, we aimed to further explore the cellular processes underlying the increased MUC2 production by HT29-MTX-E12 cells grown under SWMS conditions. Cells grown on Transwell membranes for 14 days under static and SWMS conditions (after cell seeding and attachment) were subjected to transcriptome analysis to investigate underlying molecular pathways at gene expression level. Caco-2 and LS174T cell lines were included as references. We characterized how SWMS conditions affected HT29-MTX-E12 cells in terms of epithelial barrier integrity, by measuring transepithelial electrical resistance, and cell metabolism, by monitoring pH and lactate production per molecule glucose of the conditioned medium. We confirmed higher MUC2 production under SWMS conditions at gene and protein level and demonstrated that this culturing method primarily stimulated cell growth. In addition, we also found evidence for a more aerobic cell metabolism under SWMS, as shown previously for similar models. In summary, we suggest different mechanisms by which MUC2 production is enhanced under SWMS and propose potential applications of this model in future studies.


2021 ◽  
Vol 22 (24) ◽  
pp. 13642
Author(s):  
Hassan Melhem ◽  
Daniel Regan-Komito ◽  
Jan Hendrik Niess

Maintaining intestinal health requires clear segregation between epithelial cells and luminal microbes. The intestinal mucus layer, produced by goblet cells (GCs), is a key element in maintaining the functional protection of the epithelium. The importance of the gut mucus barrier is highlighted in mice lacking Muc2, the major form of secreted mucins. These mice show closer bacterial residence to epithelial cells, develop spontaneous colitis and became moribund when infected with the attaching and effacing pathogen, Citrobacter rodentium. Furthermore, numerous observations have associated GCs and mucus layer dysfunction to the pathogenesis of inflammatory bowel disease (IBD). However, the molecular mechanisms that regulate the physiology of GCs and the mucus layer remain obscured. In this review, we consider novel findings describing divergent functionality and expression profiles of GCs subtypes within intestinal crypts. We also discuss internal (host) and external (diets and bacteria) factors that modulate different aspects of the mucus layer as well as the contribution of an altered mucus barrier to the onset of IBD.


Author(s):  
Pieter-Jan Kerkhof ◽  
Stephen L. W. On ◽  
Kurt Houf

A study on the polyphasic taxonomic classification of an Arcobacter strain, R-73987T, isolated from the rectal mucus of a porcine intestinal tract, was performed. Phylogenetic analysis based on the 16S rRNA gene sequence revealed that the strain could be assigned to the genus Arcobacter and suggested that strain R-73987T belongs to a novel undescribed species. Comparative analysis of the rpoB gene sequence confirmed the findings. Arcobacter faecis LMG 28519T was identified as its closest neighbour in a multigene analysis based on 107 protein- encoding genes. Further, whole-genome sequence comparisons by means of average nucleotide identity and in silico DNA–DNA hybridization between the genome of strain R-73987T and the genomes of validly named Arcobacter species resulted in values below 95–96 and 70  %, respectively. In addition, a phenotypic analysis further corroborated the conclusion that strain R-73987T represents a novel Arcobacter species, for which the name Arcobacter vandammei sp. nov. is proposed. The type strain is R-73987T (=LMG 31429T=CCUG 75005T). This appears to be the first Arcobacter species recovered from porcine intestinal mucus.


Author(s):  
Amy Parrish ◽  
Marie Boudaud ◽  
Annette Kuehn ◽  
Markus Ollert ◽  
Mahesh S. Desai

2021 ◽  
Vol 12 ◽  
Author(s):  
Keita Nishiyama ◽  
Tatsunari Yokoi ◽  
Makoto Sugiyama ◽  
Ro Osawa ◽  
Takao Mukai ◽  
...  

There are numerous bacteria reside within the mammalian gastrointestinal tract. Among the intestinal bacteria, Akkermansia, Bacteroides, Bifidobacterium, and Ruminococcus closely interact with the intestinal mucus layer and are, therefore, known as mucosal bacteria. Mucosal bacteria use host or dietary glycans for colonization via adhesion, allowing access to the carbon source that the host’s nutrients provide. Cell wall or membrane proteins, polysaccharides, and extracellular vesicles facilitate these mucosal bacteria-host interactions. Recent studies revealed that the physiological properties of Bacteroides and Bifidobacterium significantly change in the presence of co-existing symbiotic bacteria or markedly differ with the spatial distribution in the mucosal niche. These recently discovered strategic colonization processes are important for understanding the survival of bacteria in the gut. In this review, first, we introduce the experimental models used to study host-bacteria interactions, and then, we highlight the latest discoveries on the colonization properties of mucosal bacteria, focusing on the roles of the cell surface architecture regarding Bacteroides and Bifidobacterium.


Nanomaterials ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2621
Author(s):  
Gerrit Bredeck ◽  
Angela A. M. Kämpfer ◽  
Adriana Sofranko ◽  
Tina Wahle ◽  
Veronika Büttner ◽  
...  

The increasing use of engineered nanomaterials (ENM) in food has fueled the development of intestinal in vitro models for toxicity testing. However, ENM effects on intestinal mucus have barely been addressed, although its crucial role for intestinal health is evident. We investigated the effects of ENM on mucin expression and aimed to evaluate the suitability of four in vitro models of increasing complexity compared to a mouse model exposed through feed pellets. We assessed the gene expression of the mucins MUC1, MUC2, MUC5AC, MUC13 and MUC20 and the chemokine interleukin-8 in pre-confluent and confluent HT29-MTX-E12 cells, in stable and inflamed triple cultures of Caco-2, HT29-MTX-E12 and THP-1 cells, and in the ileum of mice following exposure to TiO2, Ag, CeO2 or SiO2. All ENM had shared and specific effects. CeO2 downregulated MUC1 in confluent E12 cells and in mice. Ag induced downregulation of Muc2 in mice. Overall, the in vivo data were consistent with the findings in the stable triple cultures and the confluent HT29-MTX-E12 cells but not in pre-confluent cells, indicating the higher relevance of advanced models for hazard assessment. The effects on MUC1 and MUC2 suggest that specific ENM may lead to an elevated susceptibility towards intestinal infections and inflammations.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yada Duangnumsawang ◽  
Jürgen Zentek ◽  
Farshad Goodarzi Boroojeni

Intestinal mucus plays important roles in protecting the epithelial surfaces against pathogens, supporting the colonization with commensal bacteria, maintaining an appropriate environment for digestion, as well as facilitating nutrient transport from the lumen to the underlying epithelium. The mucus layer in the poultry gut is produced and preserved by mucin-secreting goblet cells that rapidly develop and mature after hatch as a response to external stimuli including environmental factors, intestinal microbiota as well as dietary factors. The ontogenetic development of goblet cells affects the mucin composition and secretion, causing an alteration in the physicochemical properties of the mucus layer. The intestinal mucus prevents the invasion of pathogens to the epithelium by its antibacterial properties (e.g. β-defensin, lysozyme, avidin and IgA) and creates a physical barrier with the ability to protect the epithelium from pathogens. Mucosal barrier is the first line of innate defense in the gastrointestinal tract. This barrier has a selective permeability that allows small particles and nutrients passing through. The structural components and functional properties of mucins have been reviewed extensively in humans and rodents, but it seems to be neglected in poultry. This review discusses the impact of age on development of goblet cells and their mucus production with relevance for the functional characteristics of mucus layer and its protective mechanism in the chicken’s intestine. Dietary factors directly and indirectly (through modification of the gut bacteria and their metabolic activities) affect goblet cell proliferation and differentiation and can be used to manipulate mucosal integrity and dynamic. However, the mode of action and mechanisms behind these effects need to be studied further. As mucins resist to digestion processes, the sloughed mucins can be utilized by bacteria in the lower part of the gut and are considered as endogenous loss of protein and energy to animal. Hydrothermal processing of poultry feed may reduce this loss by reduction in mucus shedding into the lumen. Given the significance of this loss and the lack of precise data, this matter needs to be carefully investigated in the future and the nutritional strategies reducing this loss have to be defined better.


2021 ◽  
Vol 22 (19) ◽  
pp. 10224
Author(s):  
Samuel Fernández-Tomé ◽  
Lorena Ortega Moreno ◽  
María Chaparro ◽  
Javier P. Gisbert

The gastrointestinal tract is optimized to efficiently absorb nutrients and provide a competent barrier against a variety of lumen environmental compounds. Different regulatory mechanisms jointly collaborate to maintain intestinal homeostasis, but alterations in these mechanisms lead to a dysfunctional gastrointestinal barrier and are associated to several inflammatory conditions usually found in chronic pathologies such as inflammatory bowel disease (IBD). The gastrointestinal mucus, mostly composed of mucin glycoproteins, covers the epithelium and plays an essential role in digestive and barrier functions. However, its regulation is very dynamic and is still poorly understood. This review presents some aspects concerning the role of mucus in gut health and its alterations in IBD. In addition, the impact of gut microbiota and dietary compounds as environmental factors modulating the mucus layer is addressed. To date, studies have evidenced the impact of the three-way interplay between the microbiome, diet and the mucus layer on the gut barrier, host immune system and IBD. This review emphasizes the need to address current limitations on this topic, especially regarding the design of robust human trials and highlights the potential interest of improving our understanding of the regulation of the intestinal mucus barrier in IBD.


Author(s):  
Marianne Grognot ◽  
Anisha Mittal ◽  
Mattia Mah’moud ◽  
Katja M. Taute

Cholera disease is caused by Vibrio cholerae infecting the lining of the small intestine and results in severe diarrhea. V. cholerae ’s swimming motility is known to play a crucial role in pathogenicity and may aid the bacteria in crossing the intestinal mucus barrier to reach sites of infection, but the exact mechanisms are unknown. The cell can be either pushed or pulled by its single polar flagellum, but there is no consensus on the resulting repertoire of motility behaviors. We use high-throughput 3D bacterial tracking to observe V. cholerae swimming in buffer, in viscous solutions of the synthetic polymer PVP, and in mucin solutions that may mimic the host environment. We perform a statistical characterization of its motility behavior on the basis of large 3D trajectory datasets. We find that V. cholerae performs asymmetric run-reverse-flick motility, consisting of a sequence of a forward run, reversal, and a shorter backward run, followed by a turn by approximately 90°, called a flick, preceding the next forward run. Unlike many run-reverse-flick swimmers, V. cholerae ’s backward runs are much shorter than its forward runs, resulting in an increased effective diffusivity. We also find that the swimming speed is not constant, but subject to frequent decreases. The turning frequency in mucin matches that observed in buffer. Run-reverse-flick motility and speed fluctuations are present in all environments studied, suggesting that these behaviors may also occur in natural aquatic habitats as well as the host environment. IMPORTANCE Cholera disease produces vomiting and severe diarrhea and causes approximately 100,000 deaths per year worldwide. The disease is caused by the bacterium Vibrio cholerae colonizing the lining of the small intestine. V. cholerae ’s ability to swim is known to increase its infectivity, but the underlying mechanisms are not known. One possibility is that swimming may aid in crossing the protective mucus barrier that covers the lining of the small intestine. Our work characterizing how V. cholerae swims in environments that mimic properties of the host environment may advance the understanding of how motility contributes to infection.


Sign in / Sign up

Export Citation Format

Share Document