scholarly journals Isolation and Characterization of Sorbitol-Fermenting Shiga Toxin (Verocytotoxin)-Producing Escherichia coli O157:Hßtrains in the Czech Republic

1998 ◽  
Vol 36 (7) ◽  
pp. 2135-2137 ◽  
Author(s):  
Martina Bielaszewska ◽  
Herbert Schmidt ◽  
Mohamed A. Karmali ◽  
Rasik Khakhria ◽  
Jan Janda ◽  
...  

Two sorbitol-fermenting (SF) Shiga toxin-producingEscherichia coli (STEC) O157:H− strains were isolated from patients with hemolytic-uremic syndrome in the Czech Republic in 1995. Their phenotypic and genotypic characteristics and genomic DNA fingerprints were identical or closely related to those of SF STEC O157:H− strains isolated in Germany in 1988 to 1997. This indicates that the Czech isolates belong to the SF STEC O157 clone which is widespread in Germany. It is the first finding of the clone outside Germany.

2000 ◽  
Vol 38 (9) ◽  
pp. 3470-3473 ◽  
Author(s):  
Martina Bielaszewska ◽  
Herbert Schmidt ◽  
Almut Liesegang ◽  
Rita Prager ◽  
Wolfgang Rabsch ◽  
...  

Using the immunomagnetic separation procedure, we isolated sorbitol-fermenting (SF) Shiga toxin-producing Escherichia coli (STEC) O157:H− strains from two patients, one with hemolytic-uremic syndrome and the other with diarrhea, and from a dairy cow epidemiologically associated with the patients. The phenotypic and genotypic characteristics of all isolates were identical or closely related. Moreover, the bovine isolate showed a clonal relatedness to SF STEC O157:H− strains isolated from patients in Germany and the Czech Republic from 1988 to 1998. This is the first evidence that cattle can be a reservoir of SF STEC O157:H− and a source of human diseases.


2007 ◽  
Vol 113 (2) ◽  
pp. 237-241 ◽  
Author(s):  
J.J. Varela-Hernández ◽  
E. Cabrera-Diaz ◽  
M.A. Cardona-López ◽  
L.M. Ibarra-Velázquez ◽  
H. Rangel-Villalobos ◽  
...  

Virulence ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 1296-1305
Author(s):  
Ying Hua ◽  
Milan Chromek ◽  
Anne Frykman ◽  
Cecilia Jernberg ◽  
Valya Georgieva ◽  
...  

2010 ◽  
Vol 73 (4) ◽  
pp. 649-656 ◽  
Author(s):  
M. O. MASANA ◽  
G. A. LEOTTA ◽  
L. L. DEL CASTILLO ◽  
B. A. D'ASTEK ◽  
P. M. PALLADINO ◽  
...  

In Argentina, Escherichia coli O157:H7/NM (STEC O157) is the prevalent serotype associated with hemolytic uremic syndrome (HUS), which is endemic in the country with more than 400 cases per year. In order to estimate the prevalence and characteristics of STEC O157 in beef cattle at slaughter, a survey of 1,622 fecal and carcass samples was conducted in nine beef exporting abattoirs from November 2006 to April 2008. A total of 54 samples were found positive for STEC O157, with an average prevalence of 4.1% in fecal content and 2.6% in carcasses. Calves and heifers presented higher percentages of prevalence in feces, 10.5 and 8.5%, respectively. All STEC O157 isolates harbored stx2 (Shiga toxin 2), eae (intimin), ehxA (enterohemolysin), and fliCH7 (H7 flagellin) genes, while stx1 (Shiga toxin 1) was present in 16.7% of the strains. The prevalent (56%) stx genotype identified was stx2 combined with variant stx2c (vh-a), the combination of which is also prevalent (>90%) in STEC O157 post–enteric HUS cases in Argentina. The clonal relatedness of STEC O157 strains was established by phage typing and pulsed-field gel electrophoresis (PFGE). The 54 STEC isolates were categorized into 12 different phage types and in 29 XbaI-PFGE patterns distributed in 27 different lots. STEC O157 strains isolated from 5 of 21 carcasses were identical by PFGE (100% similarity) to strains of the fecal content of the same or a contiguous bovine in the lot. Five phage type–PFGE–stx profiles of 10 strains isolated in this study matched with the profiles of the strains recovered from 18 of 122 HUS cases that occurred in the same period.


PLoS ONE ◽  
2013 ◽  
Vol 8 (9) ◽  
pp. e73927 ◽  
Author(s):  
Monika Marejková ◽  
Květa Bláhová ◽  
Jan Janda ◽  
Angelika Fruth ◽  
Petr Petráš

2000 ◽  
Vol 63 (6) ◽  
pp. 819-821 ◽  
Author(s):  
DAVID W. K. ACHESON

Escherichia coli O157:H7 is but one of a group of Shiga toxin-producing E. coli (STEC) that cause both intestinal disease such as bloody and nonbloody diarrhea and serious complications like hemolytic uremic syndrome (HUS). While E. coli O157: H7 is the most renowned STEC, over 200 different types of STEC have been documented in meat and animals, at least 60 of which have been linked with human disease. A number of studies have suggested that non-O157 STEC are associated with clinical disease, and non-O157 STEC are present in the food supply. Non-O157 STEC, such as O111 have caused large outbreaks and HUS in the United States and other countries. The current policy in the United States is to examine ground beef for O157:H7 only, but restricting the focus to O157 will miss other important human STEC pathogens.


2010 ◽  
Vol 79 (3) ◽  
pp. 437-442
Author(s):  
Daniel Šperling ◽  
František Čada ◽  
Alois Čížek

The objectives of this study were to establish the prevalence of intestinal Spirochetes of the genusBrachyspirain Czech dogs and to determine the susceptibility of obtainedB. pilosicoliisolates to selected antibacterial substances. Spirochetes were diagnosed microscopically in 23 out of 1139 samples of dogs’ excrements, primarily intended for a parasitological testing. The cultivation of positive samples provided 10 brachyspira isolates, which were, on the basis of their biochemical activity and the results of the species-specific PCR, identified asB. pilosicoli(9 isolates) andB. hyodysenteriae(1 isolate). These dogs came from households. All the 7 tested isolatesB. pilosicoliwere sensitive to metronidazole and doxycycline, uniformly resistant to erythromycin, partly sensitive to cefazoline, lincomicine and ampicilline except for one isolate ofB. pilosicoli, which was resistant to ampicilline. The second part of study was focused on dogs with diarrhoea that came from animal shelters, where a high prevalence of 58% (10/17) ofB. pilosicoliwas found.


Sign in / Sign up

Export Citation Format

Share Document