scholarly journals Type M Resistance to Macrolides Is Due to a Two-Gene Efflux Transport System of the ATP-Binding Cassette (ABC) Superfamily

2018 ◽  
Vol 9 ◽  
Author(s):  
Francesco Iannelli ◽  
Francesco Santoro ◽  
Maria Santagati ◽  
Jean-Denis Docquier ◽  
Elisa Lazzeri ◽  
...  
2000 ◽  
Vol 182 (19) ◽  
pp. 5454-5461 ◽  
Author(s):  
Ken-Ichi Yoshida ◽  
Yasutaro Fujita ◽  
S. Dusko Ehrlich

ABSTRACT The ytrABCDEF operon of Bacillus subtiliswas deduced to encode a putative ATP-binding cassette (ABC) transport system. YtrB and YtrE could be the ABC subunits, and YtrC and YtrD are highly hydrophobic and could form a channel through the cell membrane, while YtrF could be a periplasmic lipoprotein for substrate binding. Expression of the operon was examined in cells grown in a minimal medium. The results indicate that the expression was induced only early in the stationary phase. The six ytr genes form a single operon, transcribed from a putative ςA-dependent promoter present upstream of ytrA. YtrA, which possesses a helix-turn-helix motif of the GntR family, acts probably as a repressor and regulates its own transcription. Inactivation of the operon led to a decrease in maximum cell yield and less-efficient sporulation, suggesting its involvement in the growth in stationary phase and sporulation. It is known that B. subtilis produces acetoin as an external carbon storage compound and then reuses it later during stationary phase and sporulation. When either the entireytr operon or its last gene, ytrF, was inactivated, the production of acetoin was not affected, but the reuse of acetoin became less efficient. We suggest that the Ytr transport system plays a role in acetoin utilization during stationary phase and sporulation.


2002 ◽  
Vol 184 (1) ◽  
pp. 91-103 ◽  
Author(s):  
Jeong-Woo Seo ◽  
Yasuo Ohnishi ◽  
Aiko Hirata ◽  
Sueharu Horinouchi

ABSTRACT Streptomyces griseus NP4, which was derived by UV mutagenesis from strain IFO13350, showed a bald and wrinkled colony morphology in response to glucose. Mutant NP4 formed ectopic septa at intervals along substrate hyphae, and each of the compartments developed into a spore which was indistinguishable from an aerial spore in size, shape, and thickness of the spore wall and in susceptibility to lysozyme and heat. The ectopic spores of NP4 formed in liquid medium differed from “submerged spores” in lysozyme sensitivity. Shotgun cloning experiments with a library of the chromosomal DNA of the parental strain and mutant NP4 as the host gave rise to DNA fragments giving two different phenotypes; one complementing the bald phenotype of the host, and the other causing much severe wrinkled morphology in the host. Subcloning identified a gene (dasR) encoding a transcriptional repressor belonging to the GntR family that was responsible for the reversal of the bald phenotype and a gene (dasA) encoding a lipoprotein probably serving as a substrate-binding protein in an ATP-binding cassette (ABC) transport system that was responsible for the severe wrinkled morphology. These genes were adjacent but divergently encoded. Two genes, named dasB and dasC, encoding a membrane-spanning protein were present downstream of dasA, which suggested that dasRABC comprises a gene cluster for an ABC transporter, probably for sugar import. dasR was transcribed actively during vegetative growth, and dasA was transcribed just after commencement of aerial hypha formation and during sporulation, indicating that both were developmentally regulated. Transcriptional analysis and direct sequencing of dasRA in mutant NP4 suggested a defect of this mutant in the regulatory system to control the expression of these genes. Introduction of multicopies of dasA into the wild-type strain caused ectopic septation in very young substrate hyphae after only 1 day of growth and subsequent sporulation in response to glucose. The ectopic spores of the wild type had a thinner wall than those of mutant NP4, in agreement with the observation that the former was sensitive to lysozyme and heat. Disruption of the chromosomal dasA or dasR in the wild-type strain resulted in growth as substrate mycelium, suggesting an additional role of these genes in aerial mycelium formation. The ectopic septation and sporulation in mutant NP4 and the wild-type strain carrying multicopies of dasA were independent of a microbial hormone, A-factor (2-isocapryloyl-3R-hydroxymethyl-γ-butyrolactone), that acts as a master switch of aerial mycelium formation and secondary metabolism.


2015 ◽  
Vol 290 (48) ◽  
pp. 28963-28976 ◽  
Author(s):  
Daniel J. Wichelecki ◽  
Matthew W. Vetting ◽  
Liyushang Chou ◽  
Nawar Al-Obaidi ◽  
Jason T. Bouvier ◽  
...  

Archaea ◽  
2002 ◽  
Vol 1 (1) ◽  
pp. 19-25 ◽  
Author(s):  
Sonja M. Koning ◽  
Wil N. Konings ◽  
Arnold J.M. Driessen

The hyperthermophilic archaeonPyrococcus furiosuscan utilize different carbohydrates, such as starch, maltose and trehalose. Uptake of α-glucosides is mediated by two different, binding protein-dependent, ATP-binding cassette (ABC)-type transport systems. The maltose transporter also transports trehalose, whereas the maltodextrin transport system mediates the uptake of maltotriose and higher malto-oligosaccharides, but not maltose. Both transport systems are induced during growth on their respective substrates.


1998 ◽  
Vol 180 (24) ◽  
pp. 6761-6763 ◽  
Author(s):  
Shin-ichi Maeda ◽  
Masato Okamura ◽  
Masaki Kobayashi ◽  
Tatsuo Omata

ABSTRACT Studies on the nitrite uptake capability of a mutant ofSynechococcus sp. strain PCC 7942 lacking the ATP-binding cassette-type nitrate-nitrite-bispecific transporter revealed the occurrence of a nitrite-specific active transport system with an apparent Km (NO2 −) of about 20 μM. Similar to the nitrate-nitrite-bispecific transporter, the nitrite-specific transporter was reversibly inhibited by ammonium in the medium.


Sign in / Sign up

Export Citation Format

Share Document