scholarly journals ACC Deaminase Producing Bacteria With Multifarious Plant Growth Promoting Traits Alleviates Salinity Stress in French Bean (Phaseolus vulgaris) Plants

2019 ◽  
Vol 10 ◽  
Author(s):  
Shikha Gupta ◽  
Sangeeta Pandey
Author(s):  
Twinkle Chaudhary ◽  
Rajesh Gera ◽  
Pratyoosh Shukla

Plant growth-promoting rhizobacteria (PGPR) are root endophytic bacteria used for growth promotion, and they have broader applications in enhancing specific crop yield as a whole. In the present study, we have explored the potential of Rhizobium pusense MB-17a as an endophytic bacterium isolated from the roots of the mung bean (Vigna radiata) plant. Furthermore, this bacterium was sequenced and assembled to reveal its genomic potential associated with plant growth-promoting traits. Interestingly, the root endophyte R. pusense MB-17a showed all essential PGPR traits which were determined by biochemical and PGPR tests. It was noted that this root endophytic bacterium significantly produced siderophores, indole acetic acid (IAA), ammonia, and ACC deaminase and efficiently solubilized phosphate. The maximum IAA and ammonia produced were observed to be 110.5 and 81 μg/ml, respectively. Moreover, the PGPR potential of this endophytic bacterium was also confirmed by a pot experiment for mung bean (V. radiata), whose results show a substantial increase in the plant's fresh weight by 76.1% and dry weight by 76.5% on the 60th day after inoculation of R. pusense MB-17a. Also, there is a significant enhancement in the nodule number by 66.1% and nodule fresh weight by 162% at 45th day after inoculation with 100% field capacity after the inoculation of R. pusense MB-17a. Besides this, the functional genomic annotation of R. pusense MB-17a determined the presence of different proteins and transporters that are responsible for its stress tolerance and its plant growth-promoting properties. It was concluded that the unique presence of genes like rpoH, otsAB, and clpB enhances the symbiosis process during adverse conditions in this endophyte. Through Rapid Annotation using Subsystem Technology (RAST) analysis, the key genes involved in the production of siderophores, volatile compounds, indoles, nitrogenases, and amino acids were also predicted. In conclusion, the strain described in this study gives a novel idea of using such type of endophytes for improving plant growth-promoting traits under different stress conditions for sustainable agriculture.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Sheikh Hasna Habib ◽  
Hossain Kausar ◽  
Halimi Mohd Saud

Salinity is a major environmental stress that limits crop production worldwide. In this study, we characterized plant growth-promoting rhizobacteria (PGPR) containing 1-aminocyclopropane-1-carboxylate (ACC) deaminase and examined their effect on salinity stress tolerance in okra through the induction of ROS-scavenging enzyme activity. PGPR inoculated okra plants exhibited higher germination percentage, growth parameters, and chlorophyll content than control plants. Increased antioxidant enzyme activities (SOD, APX, and CAT) and upregulation of ROS pathway genes (CAT, APX, GR, and DHAR) were observed in PGPR inoculated okra plants under salinity stress. With some exceptions, inoculation withEnterobactersp. UPMR18 had a significant influence on all tested parameters under salt stress, as compared to other treatments. Thus, the ACC deaminase-containing PGPR isolateEnterobactersp. UPMR18 could be an effective bioresource for enhancing salt tolerance and growth of okra plants under salinity stress.


2019 ◽  
Vol 17 (1) ◽  
pp. e0801 ◽  
Author(s):  
Mitra Azadikhah ◽  
Fatemeh Jamali ◽  
Hamid-Reza Nooryazdan ◽  
Fereshteh Bayat

Plant growth-promoting rhizobacteria containing 1-aminocyclopropane-1-carboxylate (ACC) deaminase enzyme reduce the level of stress, ethylene and stimulate plant growth under various biotic and abiotic stress conditions. The present study aims at characterizing efficient salt-tolerant, ACC deaminase containing Pseudomonas fluorescens strains with plant growth-promoting activity isolated from the rhizosphere of barley plants and evaluating the influence of potent plant growth-promoting rhizobacteria (PGPR) isolates on growth and yield of five barley cultivars under salinity stress. Plant growth and yield in barley cultivars following inoculation with salt-tolerant, ACC deaminase producing PGPR strains under salt stress were quantified. Results indicated that under various levels of salinity (50, 100 and 150 mM NaCl) inoculation with PGPRs had positive impact on growth parameters and yield of barley cultivars including plant height, spike length, weight and number, peduncle length, number of grains per spike, 1000-grain weight and grain yield, comparing to uninoculated control plants under salinity stress. Inoculation of barley cultivars with bacteria ameliorated the negative effects of salinity and resulted in increase in growth and yield. Besides, as the salinity levels increased, growth and yield of barley cultivars decreased; however, cultivars showed different responses to salt stress. This study demonstrates the vital role of rhizobacteria containing ACC deaminase for increasing salt tolerance and consequently improving the growth and yield of barley plants under salinity stress.


Sign in / Sign up

Export Citation Format

Share Document