root endophyte
Recently Published Documents


TOTAL DOCUMENTS

79
(FIVE YEARS 25)

H-INDEX

23
(FIVE YEARS 2)

2022 ◽  
Vol 10 (1) ◽  
pp. 194
Author(s):  
Fani Ntana ◽  
Sean R. Johnson ◽  
Björn Hamberger ◽  
Birgit Jensen ◽  
Hans J. L. Jørgensen ◽  
...  

Specialised metabolites produced during plant-fungal associations often define how symbiosis between the plant and the fungus proceeds. They also play a role in the establishment of additional interactions between the symbionts and other organisms present in the niche. However, specialised metabolism and its products are sometimes overlooked when studying plant-microbe interactions. This limits our understanding of the specific symbiotic associations and potentially future perspectives of their application in agriculture. In this study, we used the interaction between the root endophyte Serendipita indica and tomato (Solanum lycopersicum) plants to explore how specialised metabolism of the host plant is regulated upon a mutualistic symbiotic association. To do so, tomato seedlings were inoculated with S. indica chlamydospores and subjected to RNAseq analysis. Gene expression of the main tomato specialised metabolism pathways was compared between roots and leaves of endophyte-colonised plants and tissues of endophyte-free plants. S. indica colonisation resulted in a strong transcriptional response in the leaves of colonised plants. Furthermore, the presence of the fungus in plant roots appears to induce expression of genes involved in the biosynthesis of lignin-derived compounds, polyacetylenes, and specific terpenes in both roots and leaves, whereas pathways producing glycoalkaloids and flavonoids were expressed in lower or basal levels.


2022 ◽  
Vol 12 ◽  
Author(s):  
Panpan Wang ◽  
Lifang Yang ◽  
Jialing Sun ◽  
Ye Yang ◽  
Yuan Qu ◽  
...  

Panax notoginseng (Burk.) F. H. Chen is a Chinese medicinal plant of the Araliaceae family used for the treatment of cardiovascular and cerebrovascular diseases in Asia. P. notoginseng is vulnerable to root rot disease, which reduces the yield of P. notoginseng. In this study, we analyzed the rhizosphere soil and root endophyte microbial communities of P. notoginseng from different geographical locations using high-throughput sequencing. Our results revealed that the P. notoginseng rhizosphere soil microbial community was more diverse than the root endophyte community. Rhodopseudomonas, Actinoplanes, Burkholderia, and Variovorax paradoxus can help P. notoginseng resist the invasion of root rot disease. Ilyonectria mors-panacis, Pseudomonas fluorescens, and Pseudopyrenochaeta lycopersici are pathogenic bacteria of P. notoginseng. The upregulation of amino acid transport and metabolism in the soil would help to resist pathogens and improve the resistance of P. notoginseng. The ABC transporter and gene modulating resistance genes can improve the disease resistance of P. notoginseng, and the increase in the number of GTs (glycosyltransferases) and GHs (glycoside hydrolases) families may be a molecular manifestation of P. notoginseng root rot. In addition, the complete genomes of two Flavobacteriaceae species and one Bacteroides species were obtained. This study demonstrated the microbial and functional diversity in the rhizosphere and root microbial community of P. notoginseng and provided useful information for a better understanding of the microbial community in P. notoginseng root rot. Our results provide insights into the molecular mechanism underlying P. notoginseng root rot and other plant rhizosphere microbial communities.


2021 ◽  
Author(s):  
Sigisfredo Garnica ◽  
Zhiyong Liao ◽  
Samuel Hamard ◽  
Frank Waller ◽  
Madalin Parepa ◽  
...  

Abstract There is increasing evidence that microbes play a key role in some plant invasions. A diverse and widespread but little understood group of plant-associated microbes are the fungal root endophytes of the order Sebacinales. They are associated with exotic populations of invasive knotweed (Reynoutria ssp.) in Europe, but their effects on the invaders are unknown. We used the recently isolated Sebacinales root endophyte Serendipita herbamans to experimentally inoculate invasive knotweed and study root colonisation and effects on knotweed growth under different environmental conditions. We verified the inoculation success and fungal colonisation through immunofluorescence microscopy and qPCR. We found that S. herbamans strongly colonized invasive knotweed in low-nutrient and shade environments, but much less under drought or benign conditions. At low nutrients, the endophyte had a positive effect on plant growth, whereas the opposite was true under shaded conditions. Our study demonstrates that the root endophyte S. herbamans has the potential to colonize invasive knotweed fine roots and impact its growth, and it could thus also play a role in natural populations. Our results also show that effects of fungal endophytes on plants can be strongly environment-dependent, and may only be visible under stressful environmental conditions.


2021 ◽  
Author(s):  
Lisa K. Mahdi ◽  
Shingo Miyauchi ◽  
Charles Uhlmann ◽  
Ruben Garrido-Oter ◽  
Gregor Langen ◽  
...  

AbstractPlant root-associated bacteria can confer protection against pathogen infection. By contrast, the beneficial effects of root endophytic fungi and their synergistic interactions with bacteria remain poorly defined. We demonstrate that the combined action of a fungal root endophyte from a widespread taxon with core bacterial microbiota members provides synergistic protection against an aggressive soil-borne pathogen in Arabidopsis thaliana and barley. We additionally reveal early inter-kingdom growth promotion benefits which are host and microbiota composition dependent. Using RNA-sequencing, we show that these beneficial activities are not associated with extensive host transcriptional reprogramming but rather with the modulation of expression of microbial effectors and carbohydrate-active enzymes.


2021 ◽  
Author(s):  
Sigisfredo Garnica ◽  
Zhiyong Liao ◽  
Samuel Hamard ◽  
Frank Waller ◽  
Madalin Parepa ◽  
...  

AbstractThere is increasing evidence that microbes play a key role in some plant invasions. A diverse and widespread but little understood group of plant-associated microbes are the fungal root endophytes of the order Sebacinales. They are associated with exotic populations of invasive knotweed (Reynoutria ssp.) in Europe, but their effects on the invaders are unknown.We used the recently isolated Sebacinales root endophyte Serendipita herbamans to experimentally inoculate invasive knotweed and study root colonisation and effects on knotweed growth under different environmental conditions. We verified the inoculation success and fungal colonisation through immunofluorescence microscopy and qPCR.We found that S. herbamans strongly colonized invasive knotweed in low-nutrient and shade environments, but much less under drought or benign conditions. At low nutrients, the endophyte had a positive effect on plant growth, whereas the opposite was true under shaded conditions.Synthesis. Our study demonstrates that the root endophyte S. herbamans has the potential to colonize invasive knotweed fine roots and impact its growth, and it could thus also play a role in natural populations. Our results also show that effects of fungal endophytes on plants can be strongly environment-dependent, and may only be visible under stressful environmental conditions.


2021 ◽  
Vol 45 ◽  
pp. e72399
Author(s):  
Thangavelu Muthukumar ◽  
Shanmugam Karthik

Only a small number of aroids are examined for their symbiosis with glomeromycotean arbuscular mycorrhizal (GAM) fungi and the ascomycetous dark septate endophytic (DSE) fungi. Therefore we examined the aerial and terrestrial adventitious roots of Epipremnum aureum for the endophytic association and the soils for GAM spores. The aerial roots of E. aureum were free from fungal structures, whereas the terrestrial roots were colonized by GAM, fine root endophyte (FRE), and DSE fungi. The major portion of the terrestrial roots was colonized by FRE fungi followed by GAM and DSE fungi. The colonization pattern was a complex of Arum-Paris and intermediate types. Spores of Acaulospora, Funneliformis, Rhizophagus, Rhizophagus and Sclerocystis were isolated from the root zone soils. The results show that E. aureum can establish symbiosis with a wide range of endophytic fungi and FRE symbiosis is reported for the first time in aroids.


Processes ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 1451
Author(s):  
Liang Mei ◽  
Ying-Xin Chen ◽  
Chao Wang ◽  
Jia-Hua Chen ◽  
Zhi-Jin Zhang ◽  
...  

The research herein explored the possible mechanism of toxicity of the antibiotic sulfadiazine (SD) and the related antibiotic resistance gene transformation in lettuce by systematically investigating its growth responses, ultrastructural changes, and antibiotic resistance gene transformation via solution culture experiments. The results showed that SD mainly accumulated in the roots of lettuce at concentrations ranging from 6.48 to 120.87 μg/kg, which were significantly higher than those in leaves (3.90 to 16.74 μg/kg). Lower concentrations of SD (0.5 and 2.0 mg/L) in the culture nutrient solution exerted little effect on lettuce growth, while at SD concentrations higher than 10 mg/L, the growth of lettuce was significantly inhibited, manifesting as shorter root length and lower dry matter yield of whole lettuce plants. Compared with that for the control group, the absolute abundance of bacteria in the root endophyte, rhizosphere, and phyllosphere communities under different concentrations of SD treatment decreased significantly. sul1 and sul2 mainly accumulated in the root endophyte community, at levels significantly higher than those in the leaf endophyte community. Studies of electrolyte leakage and ultrastructural characteristics of root and leaf cells indicated that lettuce grown in culture solutions with high SD concentrations suffered severe damage and disintegration of the cell walls of organs, especially chloroplasts, in leaves. Furthermore, the possible mechanism of SD toxicity in lettuce was confirmed to start with the roots, followed by a free flow of SD into the leaves to destroy the chloroplasts in the leaf cells, which ultimately reduced photosynthesis and decreased plant growth. Studies have shown that antibiotic residues have negative effects on the growth of lettuce and highlight a potential risk of the development and spread of antibiotic resistance in vegetable endophyte systems.


2021 ◽  
Author(s):  
Pan Pan Wang ◽  
Li Fang Yang ◽  
Jia Ling Sun ◽  
Ye Yang ◽  
Yuan Qu ◽  
...  

Abstract Background: Panax notoginseng (Burkill) F. H. Chen is a Chinese medicinal plant of the Araliaceae family commonly used in the treatment of cardiovascular and cerebrovascular diseases in Asia and elsewhere. To meet an increase in Chinese herbal medicine market demand, most P. notoginseng is planted artificially, and is vulnerable to various plant diseases. Root rot disease, in particular, causes substantial P. notoginseng yield reduction and economic losses. High-depth next-generation sequencing technology was used to analyze the rhizosphere and root endophyte microbial communities of P. notoginseng to compare the characteristics of these two communities between healthy and root rot diseased P. notoginseng plants, and to clarify the relationship between these microbial communities and root rot disease.Results: The P. notoginseng rhizosphere microbial community was more diverse than the root endophyte community, and the difference in functional pathways between healthy and diseased P. notoginseng plants was greater in the root endophyte than in the rhizosphere communities. Multi-database annotation results showed that the highest number of endophytic bacteria occurred in the roots of diseased plants. The number of carbohydrate-active enzymes database families was also higher in diseased roots. The RND antibiotic efflux function was higher in the healthy samples. A high abundance of Variovorax paradoxus and Pseudomonas fluorescens occurred in the healthy and diseased root endophyte communities, respectively. Ilyonectria mors-panacis and Pseudopyrenochaeta lycopersici were most abundant in the diseased samples. In addition, the complete genome of two unknown Flavobacteriaceae species and one unknown Bacteroides species were obtained based on binning analysis.Conclusions: The rhizosphere and root endophyte microbial communities of healthy and root rot diseased P. notoginseng showed marked differences in diversity and functional pathways. The higher mapping values obtained for the diseased samples reflected the occurrence of root rot disease at the molecular level. Variovorax paradoxus and Pseudomonas fluorescens may be antagonistic bacteria of root rot in P. notoginseng, whereas Ilyonectria mors-panacis and Pseudopyrenochaeta lycopersici appear to be P. notoginseng root rot pathogens. Our study provides a theoretical basis for understanding the occurrence of root rot in P. notoginseng and for further research on potential biological control agents.


2021 ◽  
pp. 126765
Author(s):  
Hong-Wei Wang ◽  
Chen-Yu Ma ◽  
Fang-Ji Xu ◽  
Fan Lu ◽  
Wei Zhang ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document