scholarly journals The CzcCBA Efflux System Requires the CadA P-Type ATPase for Timely Expression Upon Zinc Excess in Pseudomonas aeruginosa

2020 ◽  
Vol 11 ◽  
Author(s):  
Verena Ducret ◽  
Manuel R. Gonzalez ◽  
Sara Leoni ◽  
Martina Valentini ◽  
Karl Perron
1999 ◽  
Vol 43 (5) ◽  
pp. 1301-1303 ◽  
Author(s):  
Taiji Nakae ◽  
Akira Nakajima ◽  
Toshihisa Ono ◽  
Kohjiro Saito ◽  
Hiroshi Yoneyama

ABSTRACT We evaluated the roles of the MexAB-OprM efflux pump and β-lactamase in β-lactam resistance in Pseudomonas aeruginosa by constructing OprM-deficient, OprM basal level, and OprM fully expressed mutants from β-lactamase-negative, -inducible, and -overexpressed strains. We conclude that, with the notable exception of imipenem, the MexAB-OprM pump contributes significantly to β-lactam resistance in both β-lactamase-negative and β-lactamase-inducible strains, while the contribution of the MexAB-OprM efflux system is negligible in strains with overexpressed β-lactamase. Overexpression of the efflux pump alone contributes to the high level of β-lactam resistance in the absence of β-lactamase.


2006 ◽  
Vol 188 (24) ◽  
pp. 8649-8654 ◽  
Author(s):  
Yuji Morita ◽  
Lily Cao ◽  
Virginia C. Gould ◽  
Matthew B. Avison ◽  
Keith Poole

ABSTRACT The Pseudomonas aeruginosa nalD gene encodes a TetR family repressor with homology to the SmeT and TtgR repressors of the smeDEF and ttgABC multidrug efflux systems of Stenotrophomonas maltophilia and Pseudomonas putida, respectively. A sequence upstream of mexAB-oprM and overlapping a second promoter for this efflux system was very similar to the SmeT and TtgR operator sequences, and NalD binding to this region was, in fact, demonstrated. Moreover, increased expression from this promoter was seen in a nalD mutant, consistent with NalD directly controlling mexAB-oprM expression from a second promoter.


2018 ◽  
Vol 73 (5) ◽  
pp. 1247-1255 ◽  
Author(s):  
Keith Poole ◽  
Christie Gilmour ◽  
Maya A Farha ◽  
Michael D Parkins ◽  
Rachael Klinoski ◽  
...  

1996 ◽  
Vol 40 (10) ◽  
pp. 2288-2290 ◽  
Author(s):  
T Köhler ◽  
M Kok ◽  
M Michea-Hamzehpour ◽  
P Plesiat ◽  
N Gotoh ◽  
...  

Pseudomonas aeruginosa possesses at least two multiple drug efflux systems which are defined by the outer membrane proteins OprM and OprJ. We have found that mutants overexpressing OprM were two- and eightfold more resistant than their wild-type parent to sulfamethoxazole (SMX) and trimethoprim (TMP), respectively. For OprJ-overproducing strains, MICs of TMP increased fourfold but those of SMX were unchanged. Strains overexpressing OprM, but not those overexpressing OprJ, became hypersusceptible to TMP and SMX when oprM was inactivated. The wild-type antibiotic profile could be restored in an oprM mutant by transcomplementation with the cloned oprM gene. These results demonstrate that the mexABoprM multidrug efflux system is mainly responsible for the intrinsic resistance of P. aeruginosa to TMP and SMX.


1999 ◽  
Vol 43 (11) ◽  
pp. 2624-2628 ◽  
Author(s):  
Julio Ramos Aires ◽  
Thilo Köhler ◽  
Hiroshi Nikaido ◽  
Patrick Plésiat

ABSTRACT A mutant, named 11B, hypersusceptible to aminoglycosides, tetracycline, and erythromycin was isolated after Tn501insertion mutagenesis of Pseudomonas aeruginosa PAO1. Cloning and sequencing experiments showed that 11B was deficient in an, at that time, unknown active efflux system that contains homologs of MexAB. This locus also contained a putative regulatory gene,mexZ, transcribed divergently from the efflux operon. Introduction of a recombinant plasmid that carries the genes of the efflux system restored the resistance of 11B to parental levels, whereas overexpression of these genes strongly increased the MICs of substrate antibiotics for the PAO1 host. Antibiotic accumulation studies confirmed that this new system is an energy-dependent active efflux system that pumps out aminoglycosides. Furthermore, this system appeared to function with an outer membrane protein, OprM. While the present paper was being written and reviewed, genes with a sequence identical to our pump genes, mexXY of P. aeruginosa, have been reported to increase resistance to erythromycin, fluoroquinolones, and organic cations inEscherichia coli hosts, although efflux of aminoglycosides was not examined (Mine et al., Antimicrob. Agents Chemother. 43:415–417, 1999). Our study thus shows that the MexXY system plays an important role in the intrinsic resistance of P. aeruginosato aminoglycosides. Although overexpression of MexXY increased the level of resistance to fluoroquinolones, disruption of themexXY operon in P. aeruginosa had no detectable effect on susceptibility to these agents.


1998 ◽  
Vol 42 (1) ◽  
pp. 65-71 ◽  
Author(s):  
Ramakrishnan Srikumar ◽  
Tatiana Kon ◽  
Naomasa Gotoh ◽  
Keith Poole

ABSTRACT The mexCD-oprJ and mexAB-oprM operons encode components of two distinct multidrug efflux pumps inPseudomonas aeruginosa. To assess the contribution of individual components to antibiotic resistance and substrate specificity, these operons and their component genes were cloned and expressed in Escherichia coli. Western immunoblotting confirmed expression of the P. aeruginosa efflux pump components in E. coli strains expressing and deficient in the endogenous multidrug efflux system (AcrAB), although only the ΔacrAB strain, KZM120, demonstrated increased resistance to antibiotics in the presence of the P. aeruginosa efflux genes. E. coli KZM120 expressing MexAB-OprM showed increased resistance to quinolones, chloramphenicol, erythromycin, azithromycin, sodium dodecyl sulfate (SDS), crystal violet, novobiocin, and, significantly, several β-lactams, which is reminiscent of the operation of this pump in P. aeruginosa. This confirmed previous suggestions that MexAB-OprM provides a direct contribution to β-lactam resistance via the efflux of this group of antibiotics. An increase in antibiotic resistance, however, was not observed when MexAB or OprM alone was expressed in KZM120. Thus, despite the fact that β-lactams act within the periplasm, OprM alone is insufficient to provide resistance to these agents. E. coli KZM120 expressing MexCD-OprJ also showed increased resistance to quinolones, chloramphenicol, macrolides, SDS, and crystal violet, though not to most β-lactams or novobiocin, again somewhat reminiscent of the antibiotic resistance profile of MexCD-OprJ-expressing strains ofP. aeruginosa. Surprisingly, E. coli KZM120 expressing MexCD alone also showed an increase in resistance to these agents, while an OprJ-expressing KZM120 failed to demonstrate any increase in antibiotic resistance. MexCD-mediated resistance, however, was absent in a tolC mutant of KZM120, indicating that MexCD functions in KZM120 in conjunction with TolC, the previously identified outer membrane component of the AcrAB-TolC efflux system. These data confirm that a tripartite efflux pump is necessary for the efflux of all substrate antibiotics and that the P. aeruginosa multidrug efflux pumps are functional and retain their substrate specificity in E. coli.


1999 ◽  
Vol 43 (12) ◽  
pp. 2975-2983 ◽  
Author(s):  
Shannon Westbrock-Wadman ◽  
David R. Sherman ◽  
Mark J. Hickey ◽  
Silvija N. Coulter ◽  
Ya Qi Zhu ◽  
...  

ABSTRACT Pseudomonas aeruginosa can employ many distinct mechanisms of resistance to aminoglycoside antibiotics; however, in cystic fibrosis patients, more than 90% of aminoglycoside-resistantP. aeruginosa isolates are of the impermeability phenotype. The precise molecular mechanisms that produce aminoglycoside impermeability-type resistance are yet to be elucidated. A subtractive hybridization technique was used to reveal gene expression differences between PAO1 and isogenic, spontaneous aminoglycoside-resistant mutants of the impermeability phenotype. Among the many genes found to be up-regulated in these laboratory mutants were the amrABgenes encoding a recently discovered efflux system. TheamrAB genes appear to be the same as the recently describedmexXY genes; however, the resistance profile that we see inP. aeruginosa is very different from that described forEscherichia coli with mexXY. Direct evidence for AmrAB involvement in aminoglycoside resistance was provided by the deletion of amrB in the PAO1-derived laboratory mutant, which resulted in the restoration of aminoglycoside sensitivity to a level nearly identical to that of the parent strain. Furthermore, transcription of the amrAB genes was shown to be up-regulated in P. aeruginosa clinical isolates displaying the impermeability phenotype compared to a genotypically matched sensitive clinical isolate from the same patient. This suggests the possibility that AmrAB-mediated efflux is a clinically relevant mechanism of aminoglycoside resistance. Although it is unlikely that hyperexpression of AmrAB is the sole mechanism conferring the impermeability phenotype, we believe that the Amr efflux system can contribute to a complex interaction of molecular events resulting in the aminoglycoside impermeability-type resistance phenotype.


2006 ◽  
Vol 50 (4) ◽  
pp. 1347-1351 ◽  
Author(s):  
Didier Hocquet ◽  
Patrice Nordmann ◽  
Farid El Garch ◽  
Ludovic Cabanne ◽  
Patrick Plésiat

ABSTRACT Cefepime (FEP) and ceftazidime (CAZ) are potent β-lactam antibiotics with similar MICs (1 to 2 μg/ml) for wild-type strains of Pseudomonas aeruginosa. However, recent epidemiological studies have highlighted the occurrence of isolates more resistant to FEP than to CAZ (FEPr/CAZs profile). We thus investigated the mechanisms conferring such a phenotype in 38 clonally unrelated strains collected in two French teaching hospitals. Most of the bacteria (n = 32; 84%) appeared to stably overexpress the mexY gene, which codes for the RND transporter of the multidrug efflux system MexXY-OprM. MexXY up-regulation was the sole FEP resistance mechanism identified (n = 12) or was associated with increased levels of pump MexAB-OprM (n = 5) or MexJK (n = 2), synthesis of secondary β-lactamase PSE-1 (n = 10), derepression of cephalosporinase AmpC (n = 1), coexpression of both OXA-35 and MexJK (n = 1), or production of both PSE-1 and MexAB-OprM (n = 1). Down-regulation of the mexXY operon in seven selected strains by the plasmid-borne repressor gene mexZ decreased FEP resistance from two- to eightfold, thereby demonstrating the significant contribution of MexXY-OprM to the FEPr/CAZs phenotype. The six isolates of this series that exhibited wild-type levels of the mexY gene were found to produce β-lactamase PSE-1 (n = 1), OXA-35 (n = 4), or both PSE-1 and OXA-35 (n = 1). Altogether, these data provide evidence that MexXY-OprM plays a major role in the development of FEP resistance among clinical strains of P. aeruginosa.


Sign in / Sign up

Export Citation Format

Share Document